Park EH, Durand DM. (2006). Role of potassium lateral diffusion in non-synaptic epilepsy: a computational study. Journal of theoretical biology. 238 [PubMed]

See more from authors: Park EH · Durand DM

References and models cited by this paper
References and models that cite this paper

Barreto E, Cressman JR. (2011). Ion concentration dynamics as a mechanism for neuronal bursting. Journal of biological physics. 37 [PubMed]

Cressman JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E. (2009). The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. Journal of computational neuroscience. 26 [PubMed]

Gentiletti D, Suffczynski P, Gnatkovsky V, de Curtis M. (2017). Changes of Ionic Concentrations During Seizure Transitions - A Modeling Study. International journal of neural systems. 27 [PubMed]

Halnes G et al. (2016). Effect of Ionic Diffusion on Extracellular Potentials in Neural Tissue. PLoS computational biology. 12 [PubMed]

Halnes G, Ostby I, Pettersen KH, Omholt SW, Einevoll GT. (2013). Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLoS computational biology. 9 [PubMed]

Lewin N, Aksay E, Clancy CE. (2012). Computational modeling reveals dendritic origins of GABA(A)-mediated excitation in CA1 pyramidal neurons. PloS one. 7 [PubMed]

Solbrå A et al. (2018). A Kirchhoff-Nernst-Planck framework for modeling large scale extracellular electrodiffusion surrounding morphologically detailed neurons. PLoS computational biology. 14 [PubMed]

Truccolo W, Ho EC. (2016). Interaction between Synaptic Inhibition and Glial-Potassium Dynamics leads to Diverse Seizure Transition Modes in Biophysical Models of Human Focal Seizures J Comput Neurosci.

Øyehaug L, Østby I, Lloyd CM, Omholt SW, Einevoll GT. (2012). Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. Journal of computational neuroscience. 32 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.