Bol K, Marsat G, Harvey-Girard E, Longtin A, Maler L. (2011). Frequency-tuned cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Kistler WM, De Zeeuw CI. (2003). Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum (London, England). 2 [PubMed]
Muller SZ, Abbott LF, Sawtell NB. (2023). A Mechanism for Differential Control of Axonal and Dendritic Spiking Underlying Learning in a Cerebellum-like Circuit Curr Biol. [PubMed]
Portfors CV, Roberts PD. (2007). Temporal and frequency characteristics of cartwheel cells in the dorsal cochlear nucleus of the awake mouse. Journal of neurophysiology. 98 [PubMed]
Rao RP, Ballard DH. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature neuroscience. 2 [PubMed]
Roberts PD. (2000). Modeling inhibitory plasticity in the electrosensory system of mormyrid electric fish. Journal of neurophysiology. 84 [PubMed]
Roberts PD. (2007). Stability of complex spike timing-dependent plasticity in cerebellar learning. Journal of computational neuroscience. 22 [PubMed]
Roberts PD, Bell CC. (2000). Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. Journal of computational neuroscience. 9 [PubMed]
Troyer TW, Doupe AJ. (2000). An associational model of birdsong sensorimotor learning I. Efference copy and the learning of song syllables. Journal of neurophysiology. 84 [PubMed]
Troyer TW, Doupe AJ. (2000). An associational model of birdsong sensorimotor learning II. Temporal hierarchies and the learning of song sequence. Journal of neurophysiology. 84 [PubMed]