Muller SZ, Abbott LF, Sawtell NB. (2023). A Mechanism for Differential Control of Axonal and Dendritic Spiking Underlying Learning in a Cerebellum-like Circuit Curr Biol. [PubMed]

See more from authors: Muller SZ · Abbott LF · Sawtell NB

References and models cited by this paper

Bell C, Bodznick D, Montgomery J, Bastian J. (1997). The generation and subtraction of sensory expectations within cerebellum-like structures. Brain, behavior and evolution. 50 Suppl 1 [PubMed]

Bell CC. (1981). An efference copy which is modified by reafferent input. Science (New York, N.Y.). 214 [PubMed]

Bell CC, Caputi A, Grant K. (1997). Physiology and plasticity of morphologically identified cells in the mormyrid electrosensory lobe. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Bell CC, Caputi A, Grant K, Serrier J. (1993). Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish. Proceedings of the National Academy of Sciences of the United States of America. 90 [PubMed]

Bell CC, Finger TE, Russell CJ. (1981). Central connections of the posterior lateral line lobe in mormyrid fish. Experimental brain research. 42 [PubMed]

Bell CC, Han V, Sawtell NB. (2008). Cerebellum-like structures and their implications for cerebellar function. Annual review of neuroscience. 31 [PubMed]

Bell CC, Han VZ, Sugawara Y, Grant K. (1997). Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature. 387 [PubMed]

Bell CC, Meek J, Yang JY. (2005). Immunocytochemical identification of cell types in the mormyrid electrosensory lobe. The Journal of comparative neurology. 483 [PubMed]

Bell CC, Russell CJ. (1978). Effect of electric organ discharge on ampullary receptors in a mormyrid. Brain research. 145 [PubMed]

Bodznick D, Montgomery JC, Carey M. (1999). Adaptive mechanisms in the elasmobranch hindbrain The Journal of experimental biology. 202 [PubMed]

Bol K, Marsat G, Harvey-Girard E, Longtin A, Maler L. (2011). Frequency-tuned cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

COOMBS JS, CURTIS DR, ECCLES JC. (1957). The generation of impulses in motoneurones. The Journal of physiology. 139 [PubMed]

COOMBS JS, CURTIS DR, ECCLES JC. (1957). The interpretation of spike potentials of motoneurones. The Journal of physiology. 139 [PubMed]

Engelmann J et al. (2008). Dendritic backpropagation and synaptic plasticity in the mormyrid electrosensory lobe. Journal of physiology, Paris. 102 [PubMed]

Enikolopov AG, Abbott LF, Sawtell NB. (2018). Internally Generated Predictions Enhance Neural and Behavioral Detection of Sensory Stimuli in an Electric Fish. Neuron. 99 [PubMed]

FUORTES MG, FRANK K, BECKER MC. (1957). Steps in the production of motoneuron spikes. The Journal of general physiology. 40 [PubMed]

Gao Z, van Beugen BJ, De Zeeuw CI. (2012). Distributed synergistic plasticity and cerebellar learning. Nature reviews. Neuroscience. 13 [PubMed]

Grace AA, Bunney BS. (1983). Intracellular and extracellular electrophysiology of nigral dopaminergic neurons--2. Action potential generating mechanisms and morphological correlates. Neuroscience. 10 [PubMed]

Grant K, Sugawara Y, Gómez L, Han VZ, Bell CC. (1998). The mormyrid electrosensory lobe in vitro: physiology and pharmacology of cells and circuits. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Han VZ, Grant K, Bell CC. (2000). Reversible associative depression and nonassociative potentiation at a parallel fiber synapse. Neuron. 27 [PubMed]

Hertäg L, Sprekeler H. (2020). Learning prediction error neurons in a canonical interneuron circuit. eLife. 9 [PubMed]

Hollmann V, Engelmann J, Gómez-Sena L. (2016). A quest for excitation: Theoretical arguments and immunohistochemical evidence of excitatory granular cells in the ELL of Gnathonemus petersii. Journal of physiology, Paris. 110 [PubMed]

Häusser M, Mel B. (2003). Dendrites: bug or feature? Current opinion in neurobiology. 13 [PubMed]

Häusser M, Stuart G, Racca C, Sakmann B. (1995). Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron. 15 [PubMed]

Keller GB, Mrsic-Flogel TD. (2018). Predictive Processing: A Canonical Cortical Computation. Neuron. 100 [PubMed]

Kennedy A et al. (2014). A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nature neuroscience. 17 [PubMed]

Kim Y, Trussell LO. (2007). Ion channels generating complex spikes in cartwheel cells of the dorsal cochlear nucleus. Journal of neurophysiology. 97 [PubMed]

Ko KW, Rasband MN, Meseguer V, Kramer RH, Golding NL. (2016). Serotonin modulates spike probability in the axon initial segment through HCN channels. Nature neuroscience. 19 [PubMed]

Letzkus JJ, Kampa BM, Stuart GJ. (2006). Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Llinás R, Nicholson C, Freeman JA, Hillman DE. (1968). Dendritic spikes and their inhibition in alligator Purkinje cells. Science (New York, N.Y.). 160 [PubMed]

London M, Häusser M. (2005). Dendritic computation. Annual review of neuroscience. 28 [PubMed]

Major G, Larkum ME, Schiller J. (2013). Active properties of neocortical pyramidal neuron dendrites. Annual review of neuroscience. 36 [PubMed]

Marblestone AH, Wayne G, Kording KP. (2016). Toward an Integration of Deep Learning and Neuroscience. Frontiers in computational neuroscience. 10 [PubMed]

Marsat G, Maler L. (2012). Preparing for the unpredictable: adaptive feedback enhances the response to unexpected communication signals. Journal of neurophysiology. 107 [PubMed]

Meek J, Grant K, Bell C. (1999). Structural organization of the mormyrid electrosensory lateral line lobe. The Journal of experimental biology. 202 [PubMed]

Mehaffey WH, Doiron B, Maler L, Turner RW. (2005). Deterministic multiplicative gain control with active dendrites. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Muller SZ, Zadina AN, Abbott LF, Sawtell NB. (2019). Continual Learning in a Multi-Layer Network of an Electric Fish. Cell. 179 [PubMed]

Nelson ME, Paulin MG. (1995). Neural simulations of adaptive reafference suppression in the elasmobranch electrosensory system. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology. 177 [PubMed]

Richards BA, Lillicrap TP. (2019). Dendritic solutions to the credit assignment problem. Current opinion in neurobiology. 54 [PubMed]

Roberts PD, Bell CC. (2000). Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. Journal of computational neuroscience. 9 [PubMed]

Roberts PD, Leen TK. (2010). Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing. Frontiers in computational neuroscience. 4 [PubMed]

Sawtell NB. (2010). Multimodal integration in granule cells as a basis for associative plasticity and sensory prediction in a cerebellum-like circuit. Neuron. 66 [PubMed]

Sawtell NB, Williams A, Bell CC. (2007). Central control of dendritic spikes shapes the responses of Purkinje-like cells through spike timing-dependent synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Schiess M, Urbanczik R, Senn W. (2016). Somato-dendritic Synaptic Plasticity and Error-backpropagation in Active Dendrites. PLoS computational biology. 12 [PubMed]

Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C. (2002). The making of a complex spike: ionic composition and plasticity. Annals of the New York Academy of Sciences. 978 [PubMed]

Scott LL, Mathews PJ, Golding NL. (2010). Perisomatic voltage-gated sodium channels actively maintain linear synaptic integration in principal neurons of the medial superior olive. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]

Spencer WA, Kandel ER. (1961). ELECTROPHYSIOLOGY OF HIPPOCAMPAL NEURONS: IV. FAST PREPOTENTIALS. Journal of neurophysiology. 24 [PubMed]

Spruston N, Schiller Y, Stuart G, Sakmann B. (1995). Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science (New York, N.Y.). 268 [PubMed]

Stuart GJ, Sakmann B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature. 367 [PubMed]

Stuart GJ, Spruston N. (2015). Dendritic integration: 60 years of progress. Nature neuroscience. 18 [PubMed]

Tsubokawa H, Ross WN. (1996). IPSPs modulate spike backpropagation and associated [Ca2+]i changes in the dendrites of hippocampal CA1 pyramidal neurons. Journal of neurophysiology. 76 [PubMed]

Turner RW, Maler L, Deerinck T, Levinson SR, Ellisman MH. (1994). TTX-sensitive dendritic sodium channels underlie oscillatory discharge in a vertebrate sensory neuron. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14 [PubMed]

Tzounopoulos T, Kim Y, Oertel D, Trussell LO. (2004). Cell-specific, spike timing-dependent plasticities in the dorsal cochlear nucleus. Nature neuroscience. 7 [PubMed]

Zhang S, Oertel D. (1993). Cartwheel and superficial stellate cells of the dorsal cochlear nucleus of mice: intracellular recordings in slices. Journal of neurophysiology. 69 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.