Yagishita S et al. (2014). A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science (New York, N.Y.). 345 [PubMed]

See more from authors: Yagishita S · Hayashi-Takagi A · Ellis-Davies GC · Urakubo H · Ishii S · Kasai H

References and models cited by this paper
References and models that cite this paper

Cone I, Shouval HZ. (2021). Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network. eLife. 10 [PubMed]

Dorman DB, Jędrzejewska-Szmek J, Blackwell KT. (2018). Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. eLife. 7 [PubMed]

Jędrzejewska-Szmek J, Damodaran S, Dorman DB, Blackwell KT. (2017). Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons. The European journal of neuroscience. 45 [PubMed]

Kato A, Morita K. (2016). Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation. PLoS computational biology. 12 [PubMed]

Lindroos R et al. (2018). Basal Ganglia Neuromodulation Over Multiple Temporal and Structural Scales-Simulations of Direct Pathway MSNs Investigate the Fast Onset of Dopaminergic Effects and Predict the Role of Kv4.2. Frontiers in neural circuits. 12 [PubMed]

Lytton WW et al. (2017). Evolutionary algorithm optimization of biological learning parameters in a biomimetic neuroprosthesis. IBM Journal of Research and Development (Computational Neuroscience special issue). 61(2/3)

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.