Joris PX, Smith PH, Yin TC. (1998). Coincidence detection in the auditory system: 50 years after Jeffress. Neuron. 21 [PubMed]

See more from authors: Joris PX · Smith PH · Yin TC

References and models cited by this paper
References and models that cite this paper

Brette R. (2012). Computing with neural synchrony. PLoS computational biology. 8 [PubMed]

Das A, Narayanan R. (2015). Active dendrites mediate stratified gamma-range coincidence detection in hippocampal model neurons. The Journal of physiology. 593 [PubMed]

Dasika VK, White JA, Colburn HS. (2007). Simple models show the general advantages of dendrites in coincidence detection. Journal of neurophysiology. 97 [PubMed]

Goodman DF, Brette R. (2010). Spike-timing-based computation in sound localization. PLoS computational biology. 6 [PubMed]

Heinz MG, Colburn HS, Carney LH. (2001). Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection. The Journal of the Acoustical Society of America. 110 [PubMed]

Krishna BS. (2002). A unified mechanism for spontaneous-rate and first-spike timing in the auditory nerve. Journal of computational neuroscience. 13 [PubMed]

Kuhlmann L, Burkitt AN, Paolini A, Clark GM. (2002). Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input. Journal of computational neuroscience. 12 [PubMed]

Takagi H, Kawasaki M. (2003). Modeling of time disparity detection by the Hodgkin-Huxley equations. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 189 [PubMed]

Vasilkov VA, Tikidji-Hamburyan RA. (2012). Accurate detection of interaural time differences by a population of slowly integrating neurons. Physical review letters. 108 [PubMed]

Zhang X, Carney LH. (2005). Response properties of an integrate-and-fire model that receives subthreshold inputs. Neural computation. 17 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.