Bialek W, Duifhuis H, Hoogstraten HW, Netten SM, van Diependaal RJ. (1985). Modelling the cochlear partition with coupled Van der Pol oscillators Peripheral Auditory Mechanisms.
Choi YS, Lee SY, Parham K, Neely ST, Kim DO. (2008). Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. The Journal of the Acoustical Society of America. 123 [PubMed]
Cohen-Schotanus J, Reinders JJ, Agsteribbe J, Meyboom-de Jong B. (2002). [Physicians for ten years: a longitudinal survey of the career development of physicians who began their studies in Groningen, the Netherlands]. Nederlands tijdschrift voor geneeskunde. 146 [PubMed]
Culling JF et al. (2011). Towards a binaural modelling toolbox Proceedings of Forum Acousticum.
Dau T, Wegner O, Mellert V, Kollmeier B. (2000). Auditory brainstem responses with optimized chirp signals compensating basilar-membrane dispersion. The Journal of the Acoustical Society of America. 107 [PubMed]
Diependaal RJ, Duifhuis H, Hoogstraten HW, Viergever MA. (1987). Numerical methods for solving one-dimensional cochlear models in the time domain. The Journal of the Acoustical Society of America. 82 [PubMed]
Duifhuis H. (2012). Springer Science & Business Media Cochlear Mechanics: Introduction to a Time Domain Analysis of the Nonlinear Cochlea.
Duifhuis H, van Netten SM. (1983). Modelling an active, nonlinear cochlea Mechanics of Hearing.
Elliott SJ, Ku EM, Lineton B. (2007). A state space model for cochlear mechanics. The Journal of the Acoustical Society of America. 122 [PubMed]
Epp B, Verhey JL, Mauermann M. (2010). Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. The Journal of the Acoustical Society of America. 128 [PubMed]
Gentle JE. (1998). Gaussian Elimination 3.1 Numerical Linear Algebra for Applications in Statistics.
Glasberg BR, Moore BC. (1990). Derivation of auditory filter shapes from notched-noise data. Hearing research. 47 [PubMed]
Greenwood DD. (1961). Critical bandwidth and the frequency coordinates of the basilar membrane J. Acoust. Soc. Am.. 33
Kalluri R, Shera CA. (2007). Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. The Journal of the Acoustical Society of America. 121 [PubMed]
Kemp DT, Chum R. (1980). Properties of the generator of stimulated acoustic emissions. Hearing research. 2 [PubMed]
Liu YW, Neely ST. (2010). Distortion product emissions from a cochlear model with nonlinear mechanoelectrical transduction in outer hair cells. The Journal of the Acoustical Society of America. 127 [PubMed]
Moleti A, Paternoster N, Bertaccini D, Sisto R, Sanjust F. (2009). Otoacoustic emissions in time-domain solutions of nonlinear non-local cochlear models. The Journal of the Acoustical Society of America. 126 [PubMed]
Moore BC, Glasberg BR. (1983). Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. The Journal of the Acoustical Society of America. 74 [PubMed]
Oxenham AJ, Shera CA. (2003). Estimates of human cochlear tuning at low levels using forward and simultaneous masking. Journal of the Association for Research in Otolaryngology : JARO. 4 [PubMed]
Pigasse G. (2008). Deriving cochlear delays in humans using otoacoustic emissions and auditory evoked potentials Ph.D. thesis,.
Prieve BA, Falter SR. (1995). COAEs and SSOAEs in adults with increased age. Ear and hearing. 16 [PubMed]
Probst R, Coats AC, Martin GK, Lonsbury-Martin BL. (1986). Spontaneous, click-, and toneburst-evoked otoacoustic emissions from normal ears. Hearing research. 21 [PubMed]
Puria S. (2003). Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. The Journal of the Acoustical Society of America. 113 [PubMed]
Recio A, Rhode WS. (2000). Basilar membrane responses to broadband stimuli. The Journal of the Acoustical Society of America. 108 [PubMed]
Ren T. (2002). Longitudinal pattern of basilar membrane vibration in the sensitive cochlea. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]
Rhode WS, Recio A. (2000). Study of mechanical motions in the basal region of the chinchilla cochlea. The Journal of the Acoustical Society of America. 107 [PubMed]
Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH. (2006). Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. The Journal of the Acoustical Society of America. 120 [PubMed]
Shera CA. (2001). Intensity-invariance of fine time structure in basilar-membrane click responses: implications for cochlear mechanics. The Journal of the Acoustical Society of America. 110 [PubMed]
Shera CA, Dau T, Verhulst S, Harte JM. (2011). Can a static nonlinearity account for the dynamics of otoacoustic emission suppression? What Fire is in Mine Ears: Progress in Auditory Biomechanics, Proceedings of the 11th International Mechanics of Hearing Workshop.
Shera CA, Guinan JJ. (1999). Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. The Journal of the Acoustical Society of America. 105 [PubMed]
Shera CA, Guinan JJ. (2003). Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. The Journal of the Acoustical Society of America. 113 [PubMed]
Shera CA, Guinan JJ, Oxenham AJ. (2002). Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]
Shera CA, Guinan JJ, Oxenham AJ. (2010). Otoacoustic estimation of cochlear tuning: validation in the chinchilla. Journal of the Association for Research in Otolaryngology : JARO. 11 [PubMed]
Shera CA, Tubis A, Talmadge CL. (2008). Testing coherent reflection in chinchilla: Auditory-nerve responses predict stimulus-frequency emissions. The Journal of the Acoustical Society of America. 124 [PubMed]
Shera CA, Zweig G. (1991). A symmetry suppresses the cochlear catastrophe. The Journal of the Acoustical Society of America. 89 [PubMed]
Talmadge CL, Tubis A, Long GR, Piskorski P. (1998). Modeling otoacoustic emission and hearing threshold fine structures. The Journal of the Acoustical Society of America. 104 [PubMed]
Verhulst S, Harte JM, Dau T. (2011). Temporal suppression of the click-evoked otoacoustic emission level-curve. The Journal of the Acoustical Society of America. 129 [PubMed]
Zweig G. (1990). The impedance of the organ of Corti Mechanics and Biophysics of Hearing, Lecture Notes in Biomathematics. 87
Zweig G. (1991). Finding the impedance of the organ of Corti. The Journal of the Acoustical Society of America. 89 [PubMed]
Zweig G, Shera CA. (1995). The origin of periodicity in the spectrum of evoked otoacoustic emissions. The Journal of the Acoustical Society of America. 98 [PubMed]
Altoè A, Pulkki V, Verhulst S. (2014). Transmission line cochlear models: improved accuracy and efficiency. The Journal of the Acoustical Society of America. 136 [PubMed]
Verhulst S, Altoè A, Vasilkov V. (2018). Computational modeling of the human auditory periphery: Auditory-nerve responses, evoked potentials and hearing loss. Hearing research. 360 [PubMed]