Barkai E, Bergman RE, Horwitz G, Hasselmo ME. (1994). Modulation of associative memory function in a biophysical simulation of rat piriform cortex. Journal of neurophysiology. 72 [PubMed]
Kim S, Singer BH, Zochowski M. (2006). Changing roles for temporal representation of odorant during the oscillatory response of the olfactory bulb. Neural computation. 18 [PubMed]
Marella S, Ermentrout B. (2010). Amplification of asynchronous inhibition-mediated synchronization by feedback in recurrent networks. PLoS computational biology. 6 [PubMed]
Margrie TW, Schaefer AT. (2003). Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. The Journal of physiology. 546 [PubMed]
O'Connor S, Angelo K, Jacob TJ. (2012). Burst firing versus synchrony in a gap junction connected olfactory bulb mitral cell network model Frontiers in computational neuroscience. 6 [PubMed]
Sanders H, Berends M, Major G, Goldman MS, Lisman JE. (2013). NMDA and GABAB (KIR) conductances: the "perfect couple" for bistability. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
Sanders H et al. (2014). A network that performs brute-force conversion of a temporal sequence to a spatial pattern: relevance to odor recognition. Frontiers in computational neuroscience. 8 [PubMed]
Tikidji-Hamburyan RA, MartÃnez JJ, White JA, Canavier CC. (2015). Resonant Interneurons Can Increase Robustness of Gamma Oscillations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Whittington MA, Traub RD, Jefferys JG. (1995). Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 373 [PubMed]
Wilson M, Bower JM. (1992). Cortical oscillations and temporal interactions in a computer simulation of piriform cortex. Journal of neurophysiology. 67 [PubMed]