Watanabe M, Kodama T, Hikosaka K. (1997). Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. Journal of neurophysiology. 78 [PubMed]

See more from authors: Watanabe M · Kodama T · Hikosaka K

References and models cited by this paper
References and models that cite this paper

Durstewitz D, Gabriel T. (2007). Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

Durstewitz D, Seamans JK, Sejnowski TJ. (2000). Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. Journal of neurophysiology. 83 [PubMed]

Edin F, Macoveanu J, Olesen P, Tegnér J, Klingberg T. (2007). Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. Journal of cognitive neuroscience. 19 [PubMed]

Reneaux M, Gupta R. (2018). Prefronto-cortical dopamine D1 receptor sensitivity can critically influence working memory maintenance during delayed response tasks PLOS ONE. 13(5)

Yang CR, Seamans JK, Gorelova N. (1999). Developing a neuronal model for the pathophysiology of schizophrenia based on the nature of electrophysiological actions of dopamine in the prefrontal cortex. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 21 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.