Debay D, Wolfart J, Le Franc Y, Le Masson G, Bal T. (2004). Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks. Journal of physiology, Paris. 98 [PubMed]
Destexhe A, Sejnowski TJ. (2003). Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiological reviews. 83 [PubMed]
Escabí MA, Nassiri R, Miller LM, Schreiner CE, Read HL. (2005). The contribution of spike threshold to acoustic feature selectivity, spike information content, and information throughput. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Gutkin BS, Laing CR, Colby CL, Chow CC, Ermentrout GB. (2001). Turning on and off with excitation: the role of spike-timing asynchrony and synchrony in sustained neural activity. Journal of computational neuroscience. 11 [PubMed]
Keane A, Henderson JA, Gong P. (2018). Dynamical patterns underlying response properties of cortical circuits. Journal of the Royal Society, Interface. 15 [PubMed]
Keil MS. (2006). Smooth gradient representations as a unifying account of Chevreul's illusion, Mach bands, and a variant of the Ehrenstein disk. Neural computation. 18 [PubMed]
Masuda N, Doiron B, Longtin A, Aihara K. (2005). Coding of temporally varying signals in networks of spiking neurons with global delayed feedback. Neural computation. 17 [PubMed]
Nenadic Z, Ghosh BK, Ulinski P. (2003). Propagating waves in visual cortex: a large-scale model of turtle visual cortex. Journal of computational neuroscience. 14 [PubMed]
Rangan AV, Cai D, McLaughlin DW. (2005). Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]
Rankin J, Chavane F. (2017). Neural field model to reconcile structure with function in primary visual cortex. PLoS computational biology. 13 [PubMed]
Robbins KA, Senseman DM. (2004). Extracting wave structure from biological data with application to responses in turtle visual cortex. Journal of computational neuroscience. 16 [PubMed]
Schulz R, Reggia JA. (2005). Mirror symmetric topographic maps can arise from activity-dependent synaptic changes. Neural computation. 17 [PubMed]
Shushruth S et al. (2012). Strong recurrent networks compute the orientation tuning of surround modulation in the primate primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]
Tomov P, Pena RF, Zaks MA, Roque AC. (2014). Sustained oscillations, irregular firing, and chaotic dynamics in hierarchical modular networks with mixtures of electrophysiological cell types. Frontiers in computational neuroscience. 8 [PubMed]
Wang W, Campaigne C, Ghosh BK, Ulinski PS. (2005). Two cortical circuits control propagating waves in visual cortex. Journal of computational neuroscience. 19 [PubMed]
Zerlaut Y, Chemla S, Chavane F, Destexhe A. (2018). Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons. Journal of computational neuroscience. 44 [PubMed]