Bogacz R, Gurney K. (2007). The basal ganglia and cortex implement optimal decision making between alternative actions. Neural computation. 19 [PubMed]
Chan CS, Shigemoto R, Mercer JN, Surmeier DJ. (2004). HCN2 and HCN1 channels govern the regularity of autonomous pacemaking and synaptic resetting in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Deister CA, Chan CS, Surmeier DJ, Wilson CJ. (2009). Calcium-activated SK channels influence voltage-gated ion channels to determine the precision of firing in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Gillies A, Willshaw D. (2004). Models of the subthalamic nucleus. The importance of intranuclear connectivity. Medical engineering & physics. 26 [PubMed]
Humphries MD, Stewart RD, Gurney KN. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Kumaravelu K, Brocker DT, Grill WM. (2016). A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease. Journal of computational neuroscience. 40 [PubMed]
LiƩnard J, Girard B. (2014). A biologically constrained model of the whole basal ganglia addressing the paradoxes of connections and selection. Journal of computational neuroscience. 36 [PubMed]
Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. (2007). Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Pascual A, Modolo J, Beuter A. (2006). Is a computational model useful to understand the effect of deep brain stimulation in Parkinson's disease? Journal of integrative neuroscience. 5 [PubMed]
Pavlides A, Hogan SJ, Bogacz R. (2015). Computational Models Describing Possible Mechanisms for Generation of Excessive Beta Oscillations in Parkinson's Disease. PLoS computational biology. 11 [PubMed]
Rubchinsky LL, Kopell N, Sigvardt KA. (2003). Modeling facilitation and inhibition of competing motor programs in basal ganglia subthalamic nucleus-pallidal circuits. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]
So RQ, Kent AR, Grill WM. (2012). Relative contributions of local cell and passing fiber activation and silencing to changes in thalamic fidelity during deep brain stimulation and lesioning: a computational modeling study. Journal of computational neuroscience. 32 [PubMed]
Terman D, Rubin JE, Yew AC, Wilson CJ. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]