Nakamura T et al. (2000). Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]

See more from authors: Nakamura T · Nakamura K · Lasser-Ross N · Barbara JG · Sandler VM · Ross WN

References and models cited by this paper
References and models that cite this paper

Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]

Fall CP, Rinzel J. (2006). An intracellular Ca2+ subsystem as a biologically plausible source of intrinsic conditional bistability in a network model of working memory. Journal of computational neuroscience. 20 [PubMed]

Manita S, Ross WN. (2009). Synaptic activation and membrane potential changes modulate the frequency of spontaneous elementary Ca2+ release events in the dendrites of pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Manita S, Ross WN. (2010). IP(3) mobilization and diffusion determine the timing window of Ca(2+) release by synaptic stimulation and a spike in rat CA1 pyramidal cells. Hippocampus. 20 [PubMed]

Teramae JN, Fukai T. (2005). A Cellular Mechanism for Graded Persistent Activity in a Model Neuron and Its Implications in Working Memory Journal of computational neuroscience. 18 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.