Zucker RS, Regehr WG. (2002). Short-term synaptic plasticity. Annual review of physiology. 64 [PubMed]

See more from authors: Zucker RS · Regehr WG

References and models cited by this paper
References and models that cite this paper

Allam SL et al. (2015). Synaptic Efficacy as a Function of Ionotropic Receptor Distribution: A Computational Study. PloS one. 10 [PubMed]

Carver S, Roth E, Cowan NJ, Fortune ES. (2008). Synaptic plasticity can produce and enhance direction selectivity. PLoS computational biology. 4 [PubMed]

Chandrasekaran L, Matveev V, Bose A. (2009). Multistability of clustered states in a globally inhibitory network Physica D: Nonlinear Phenomena. 238(3)

Chaudhuri D, Issa JB, Yue DT. (2007). Elementary mechanisms producing facilitation of Cav2.1 (P/Q-type) channels. The Journal of general physiology. 129 [PubMed]

Costa RP, Sjöström PJ, van Rossum MC. (2013). Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits. Frontiers in computational neuroscience. 7 [PubMed]

Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]

Esposito U, Giugliano M, Vasilaki E. (2014). Adaptation of short-term plasticity parameters via error-driven learning may explain the correlation between activity-dependent synaptic properties, connectivity motifs and target specificity. Frontiers in computational neuroscience. 8 [PubMed]

Esser SK, Hill SL, Tononi G. (2007). Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves. Sleep. 30 [PubMed]

Farokhniaee A, McIntyre CC. (2019). Theoretical principles of deep brain stimulation induced synaptic suppression. Brain stimulation. 12 [PubMed]

Feinerman O, Segal M, Moses E. (2007). Identification and dynamics of spontaneous burst initiation zones in unidimensional neuronal cultures. Journal of neurophysiology. 97 [PubMed]

Fiebig F, Lansner A. (2017). A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]

Goldberg DH, Andreou AG. (2007). Distortion of neural signals by spike coding. Neural computation. 19 [PubMed]

Hamid E, Church E, Alford S. (2019). Quantitation and Simulation of Single Action Potential-Evoked Ca2+ Signals in CA1 Pyramidal Neuron Presynaptic Terminals. eNeuro. 6 [PubMed]

Hayut I, Fanselow EE, Connors BW, Golomb D. (2011). LTS and FS inhibitory interneurons, short-term synaptic plasticity, and cortical circuit dynamics. PLoS computational biology. 7 [PubMed]

Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. (2008). Interactions between multiple sources of short-term plasticity during evoked and spontaneous activity at the rat calyx of Held. The Journal of physiology. 586 [PubMed]

Ibañez S, Sengupta N, Luebke JI, Wimmer K, Weaver CM. (2024). Myelin dystrophy impairs signal transmission and working memory in a multiscale model of the aging prefrontal cortex. eLife. 12 [PubMed]

Jedlicka P et al. (2011). Increased dentate gyrus excitability in neuroligin-2-deficient mice in vivo. Cerebral cortex (New York, N.Y. : 1991). 21 [PubMed]

Khalil R, Moftah MZ, Moustafa AA. (2017). The effects of dynamical synapses on firing rate activity: a spiking neural network model. The European journal of neuroscience. 46 [PubMed]

Lee CC, Anton M, Poon CS, McRae GJ. (2009). A kinetic model unifying presynaptic short-term facilitation and depression. Journal of computational neuroscience. 26 [PubMed]

Lu HC et al. (2006). Role of efficient neurotransmitter release in barrel map development. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Lüdtke N, Nelson ME. (2006). Short-term synaptic plasticity can enhance weak signal detectability in nonrenewal spike trains. Neural computation. 18 [PubMed]

Martínez-Cañada P, Morillas C, Pino B, Ros E, Pelayo F. (2016). A Computational Framework for Realistic Retina Modeling. International journal of neural systems. 26 [PubMed]

Masquelier T, Deco G. (2013). Network bursting dynamics in excitatory cortical neuron cultures results from the combination of different adaptive mechanisms. PloS one. 8 [PubMed]

Matveev V, Bertram R, Sherman A. (2006). Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation. Journal of neurophysiology. 96 [PubMed]

Matveev V, Zucker RS, Sherman A. (2004). Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophysical journal. 86 [PubMed]

McIntyre CC, Grill WM, Sherman DL, Thakor NV. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of neurophysiology. 91 [PubMed]

Mukunda CL, Narayanan R. (2017). Degeneracy in the regulation of short-term plasticity and synaptic filtering by presynaptic mechanisms. The Journal of physiology. 595 [PubMed]

Polsky A, Mel B, Schiller J. (2009). Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]

Romani A et al. (2013). Computational modeling of the effects of amyloid-beta on release probability at hippocampal synapses. Frontiers in computational neuroscience. 7 [PubMed]

Scott R, Rusakov DA. (2006). Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]

Sun HY, Lyons SA, Dobrunz LE. (2005). Mechanisms of target-cell specific short-term plasticity at Schaffer collateral synapses onto interneurones versus pyramidal cells in juvenile rats. The Journal of physiology. 568 [PubMed]

Torres JJ, Cortes JM, Marro J, Kappen HJ. (2007). Competition between synaptic depression and facilitation in attractor neural networks. Neural computation. 19 [PubMed]

Tripp BP, Eliasmith C. (2010). Population models of temporal differentiation. Neural computation. 22 [PubMed]

Yang Z, Hennig MH, Postlethwaite M, Forsythe ID, Graham BP. (2009). Wide-band information transmission at the calyx of Held. Neural computation. 21 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.