Assisi C, Stopfer M, Bazhenov M. (2020). Optimality of sparse olfactory representations is not affected by network plasticity. PLoS computational biology. 16 [PubMed]
Chan HK et al. (2018). Odorant mixtures elicit less variable and faster responses than pure odorants. PLoS computational biology. 14 [PubMed]
Chen JY et al. (2015). Learning modifies odor mixture processing to improve detection of relevant components. The Journal of neuroscience : the official journal of the Society for Neuroscience. 35 [PubMed]
Kim S, Singer BH, Zochowski M. (2006). Changing roles for temporal representation of odorant during the oscillatory response of the olfactory bulb. Neural computation. 18 [PubMed]
Martinez D. (2005). Oscillatory synchronization requires precise and balanced feedback inhibition in a model of the insect antennal lobe. Neural computation. 17 [PubMed]
Parker JR, Klishko AN, Prilutsky BI, Cymbalyuk GS. (2021). Asymmetric and transient properties of reciprocal activity of antagonists during the paw-shake response in the cat PLoS computational biology. 17 [PubMed]
Polese D, Martinelli E, Marco S, Di Natale C, Gutierrez-Galvez A. (2014). Understanding odor information segregation in the olfactory bulb by means of mitral and tufted cells. PloS one. 9 [PubMed]
Rajagopalan A, Assisi C. (2020). Effect of circuit structure on odor representation in the insect olfactory system. eNeuro. 7 [PubMed]
Ray S, Aldworth ZN, Stopfer MA. (2020). Feedback inhibition and its control in an insect olfactory circuit. eLife. 9 [PubMed]