Allen JM, Elbasiouny SM. (2018). The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors. Journal of neural engineering. 15 [PubMed]
Bhalla US, Bower JM. (1993). Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. Journal of neurophysiology. 69 [PubMed]
Burke RE. (2000). Comparison of alternative designs for reducing complex neurons to equivalent cables. Journal of computational neuroscience. 9 [PubMed]
Elbasiouny SM, Bennett DJ, Mushahwar VK. (2005). Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution. Journal of neurophysiology. 94 [PubMed]
Elbasiouny SM, Bennett DJ, Mushahwar VK. (2006). Simulation of Ca2+ persistent inward currents in spinal motoneurones: mode of activation and integration of synaptic inputs. The Journal of physiology. 570 [PubMed]
Gradwohl G, Grossman Y. (2008). Analysis of the interaction between the dendritic conductance density and activated area in modulating alpha-motoneuron EPSP: statistical computer model. Neural computation. 20 [PubMed]
Grande G, Bui TV, Rose PK. (2007). Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study. Journal of neurophysiology. 97 [PubMed]
Grossman Y, Gradwohl G. (2001). Dendritic voltage dependent conductances increase the excitatory synaptic response and its postsynaptic inhibition in a reconstructed alpha-motoneuron: A computer model Neurocomputing. 38
Grossman Y, Gradwohl G. (2007). Excitatory and inhibitory synaptic inputs are modulated by the spatial distribution of dendritic voltage-dependent channels: Modelling in realistic alpha-motoneuron Neurocomputing. 70
Grossman Y, Nitzan R, Gradwohl G. (1999). Homogeneous distribution of excitatory and inhibitory synapses on the dendrites of the cat surea triceps alpha-motoneurons increases synaptic efficacy: computer model Neurocomputing. 267
Kim H. (2020). Linking Motoneuron PIC Location to Motor Function in Closed-Loop Motor Unit System Including Afferent Feedback: A Computational Investigation. eNeuro. 7 [PubMed]
Kim H, Jones KE, Heckman CJ. (2014). Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons. PloS one. 9 [PubMed]
Kuck A, Stegeman DF, van Asseldonk EHF. (2017). Modeling trans-spinal direct current stimulation for the modulation of the lumbar spinal motor pathways Journal of neural engineering. 14 [PubMed]
Kurian M, Crook SM, Jung R. (2011). Motoneuron model of self-sustained firing after spinal cord injury. Journal of computational neuroscience. 31 [PubMed]
McIntyre CC, Grill WM. (2002). Extracellular stimulation of central neurons: influence of stimulus waveform and frequency on neuronal output. Journal of neurophysiology. 88 [PubMed]
Moraud EM et al. (2016). Mechanisms Underlying the Neuromodulation of Spinal Circuits for Correcting Gait and Balance Deficits after Spinal Cord Injury. Neuron. 89 [PubMed]
Ross MD, Linton SW, Parnas BR. (2000). Simulation studies of vestibular macular afferent-discharge patterns using a new, quasi-3-D finite volume method. Journal of computational neuroscience. 8 [PubMed]
Shepherd GM, Brayton RK. (1987). Logic operations are properties of computer-simulated interactions between excitable dendritic spines. Neuroscience. 21 [PubMed]