Aoki T, Aoyagi T. (2007). Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]
Brette R. (2012). Computing with neural synchrony. PLoS computational biology. 8 [PubMed]
Brette R et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience. 23 [PubMed]
Burkitt AN, Meffin H, Grayden DB. (2004). Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural computation. 16 [PubMed]
Chauhan T, Masquelier T, Montlibert A, Cottereau BR. (2018). Emergence of Binocular Disparity Selectivity through Hebbian Learning. The Journal of neuroscience : the official journal of the Society for Neuroscience. 38 [PubMed]
Davison AP, Frégnac Y. (2006). Learning cross-modal spatial transformations through spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Delgado JY, Gómez-González JF, Desai NS. (2010). Pyramidal neuron conductance state gates spike-timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
Florian RV. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural computation. 19 [PubMed]
Gilson M, Masquelier T, Hugues E. (2011). STDP allows fast rate-modulated coding with Poisson-like spike trains. PLoS computational biology. 7 [PubMed]
Guerrero-Rivera R, Morrison A, Diesmann M, Pearce TC. (2006). Programmable logic construction kits for hyper-real-time neuronal modeling. Neural computation. 18 [PubMed]
Hosaka R, Araki O, Ikeguchi T. (2008). STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural computation. 20 [PubMed]
Iannella N, Tanaka S. (2006). Synaptic efficacy cluster formation across the dendrite via STDP. Neuroscience letters. 403 [PubMed]
Legenstein R, Maass W. (2011). Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Legenstein R, Naeger C, Maass W. (2005). What can a neuron learn with spike-timing-dependent plasticity? Neural computation. 17 [PubMed]
Masquelier T. (2018). STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons. Neuroscience. 389 [PubMed]
Masquelier T, Hugues E, Deco G, Thorpe SJ. (2009). Oscillations, phase-of-firing coding, and spike timing-dependent plasticity: an efficient learning scheme. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Masquelier T, Saeed Reza. (2018). Optimal localist and distributed coding of spatiotemporal spike patterns through STDP and coincidence detection Front. Comput. Neurosci..
Masuda N, Aihara K. (2004). Self-organizing dual coding based on spike-time-dependent plasticity. Neural computation. 16 [PubMed]
Morrison A, Aertsen A, Diesmann M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural computation. 19 [PubMed]
Muller L, Brette R, Gutkin B. (2011). Spike-timing dependent plasticity and feed-forward input oscillations produce precise and invariant spike phase-locking. Frontiers in computational neuroscience. 5 [PubMed]
O'Donnell C, Nolan MF, van Rossum MC. (2011). Dendritic spine dynamics regulate the long-term stability of synaptic plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Rumsey CC, Abbott LF. (2004). Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. Journal of neurophysiology. 91 [PubMed]
Sadeh S, Clopath C, Rotter S. (2015). Emergence of Functional Specificity in Balanced Networks with Synaptic Plasticity. PLoS computational biology. 11 [PubMed]
Shen YS, Gao H, Yao H. (2005). Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. Journal of computational neuroscience. 18 [PubMed]
Toyoizumi T, Pfister JP, Aihara K, Gerstner W. (2007). Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural computation. 19 [PubMed]
Wennekers T, Ay N. (2005). Finite state automata resulting from temporal information maximization and a temporal learning rule. Neural computation. 17 [PubMed]
Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]