Cassarà AM, Hagberg GE, Bianciardi M, Migliore M, Maraviglia B. (2008). Realistic simulations of neuronal activity: a contribution to the debate on direct detection of neuronal currents by MRI. NeuroImage. 39 [PubMed]
Cassarà AM, Maraviglia B. (2008). Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI. NeuroImage. 41 [PubMed]
Hagen E et al. (2017). Focal Local Field Potential Signature of the Single-Axon Monosynaptic Thalamocortical Connection. The Journal of neuroscience : the official journal of the Society for Neuroscience. 37 [PubMed]
Jones SR et al. (2009). Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses. Journal of neurophysiology. 102 [PubMed]
Jones SR, Pritchett DL, Stufflebeam SM, Hämäläinen M, Moore CI. (2007). Neural correlates of tactile detection: a combined magnetoencephalography and biophysically based computational modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Murakami S, Okada Y. (2006). Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. The Journal of physiology. 575 [PubMed]
Sotero RC, Trujillo-Barreto NJ, Iturria-Medina Y, Carbonell F, Jimenez JC. (2007). Realistically coupled neural mass models can generate EEG rhythms. Neural computation. 19 [PubMed]
Tanaka T, Nakamura KC. (2019). Focal inputs are a potential origin of local field potential (LFP) in the brain regions without laminar structure. PloS one. 14 [PubMed]