Doi T, Kuroda S, Michikawa T, Kawato M. (2005). Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

See more from authors: Doi T · Kuroda S · Michikawa T · Kawato M

References and models cited by this paper

Allbritton NL, Meyer T, Stryer L. (1992). Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science (New York, N.Y.). 258 [PubMed]

Berridge MJ. (1998). Neuronal calcium signaling. Neuron. 21 [PubMed]

Bezprozvanny I, Watras J, Ehrlich BE. (1991). Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 351 [PubMed]

Bhalla US, Iyengar R. (1999). Emergent properties of networks of biological signaling pathways. Science (New York, N.Y.). 283 [PubMed]

Chen C, Thompson RF. (1995). Temporal specificity of long-term depression in parallel fiber--Purkinje synapses in rat cerebellar slice. Learning & memory (Cold Spring Harbor, N.Y.). 2 [PubMed]

Conquet F et al. (1994). Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1. Nature. 372 [PubMed]

Daniel H, Levenes C, Crépel F. (1998). Cellular mechanisms of cerebellar LTD. Trends in neurosciences. 21 [PubMed]

De Schutter E. (1995). Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis. Trends in neurosciences. 18 [PubMed]

Dupont G, Erneux C. (1997). Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell calcium. 22 [PubMed]

Eilers J, Augustine GJ, Konnerth A. (1995). Subthreshold synaptic Ca2+ signalling in fine dendrites and spines of cerebellar Purkinje neurons. Nature. 373 [PubMed]

Ekerot CF, Kano M. (1989). Stimulation parameters influencing climbing fibre induced long-term depression of parallel fibre synapses. Neuroscience research. 6 [PubMed]

Fiala JC, Grossberg S, Bullock D. (1996). Metabotropic glutamate receptor activation in cerebellar Purkinje cells as substrate for adaptive timing of the classically conditioned eye-blink response. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Fierro L, DiPolo R, Llano I. (1998). Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. The Journal of physiology. 510 ( Pt 2) [PubMed]

Fierro L, Llano I. (1996). High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. The Journal of physiology. 496 ( Pt 3) [PubMed]

Finch EA, Augustine GJ. (1998). Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature. 396 [PubMed]

Franks KM, Stevens CF, Sejnowski TJ. (2003). Independent sources of quantal variability at single glutamatergic synapses. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Fujiwara A, Hirose K, Yamazawa T, Iino M. (2001). Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons. Neuroreport. 12 [PubMed]

Harris KM, Stevens JK. (1988). Dendritic spines of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. The Journal of neuroscience : the official journal of the Society for Neuroscience. 8 [PubMed]

Hartell NA. (1996). Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron. 16 [PubMed]

Hartell NA, Furuya S, Jacoby S, Okada D. (2001). Intercellular action of nitric oxide increases cGMP in cerebellar Purkinje cells. Neuroreport. 12 [PubMed]

Inoue T, Kato K, Kohda K, Mikoshiba K. (1998). Type 1 inositol 1,4,5-trisphosphate receptor is required for induction of long-term depression in cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Irvine RF, Schell MJ. (2001). Back in the water: the return of the inositol phosphates. Nature reviews. Molecular cell biology. 2 [PubMed]

Ito M. (1970). Neurophysiological aspects of the cerebellar motor control system. International journal of neurology. 7 [PubMed]

Ito M. (2001). Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiological reviews. 81 [PubMed]

Ito M. (2002). The molecular organization of cerebellar long-term depression. Nature reviews. Neuroscience. 3 [PubMed]

Jiang H, Wu D, Simon MI. (1994). Activation of phospholipase C beta 4 by heterotrimeric GTP-binding proteins. The Journal of biological chemistry. 269 [PubMed]

Karachot L, Kado RT, Ito M. (1994). Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells. Neuroscience research. 21 [PubMed]

Kawato M. (1999). Internal models for motor control and trajectory planning. Current opinion in neurobiology. 9 [PubMed]

Khodakhah K, Ogden D. (1995). Fast activation and inactivation of inositol trisphosphate-evoked Ca2+ release in rat cerebellar Purkinje neurones. The Journal of physiology. 487 ( Pt 2) [PubMed]

Kim JJ, Thompson RF. (1997). Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends in neurosciences. 20 [PubMed]

Klingauf J, Neher E. (1997). Modeling buffered Ca2+ diffusion near the membrane: implications for secretion in neuroendocrine cells. Biophysical journal. 72 [PubMed]

Kuroda S, Schweighofer N, Kawato M. (2001). Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Linden DJ, Connor JA. (1995). Long-term synaptic depression. Annual review of neuroscience. 18 [PubMed]

Llinás R, Lang EJ, Welsh JP. (1997). The cerebellum, LTD, and memory: alternative views. Learning & memory (Cold Spring Harbor, N.Y.). 3 [PubMed]

Luzzi V, Sims CE, Soughayer JS, Allbritton NL. (1998). The physiologic concentration of inositol 1,4,5-trisphosphate in the oocytes of Xenopus laevis. The Journal of biological chemistry. 273 [PubMed]

Macgregor RJ. (1987). Neural and Brain Modeling..

Maeda H, Ellis-Davies GC, Ito K, Miyashita Y, Kasai H. (1999). Supralinear Ca2+ signaling by cooperative and mobile Ca2+ buffering in Purkinje neurons. Neuron. 24 [PubMed]

Marchant JS, Taylor CW. (1997). Cooperative activation of IP3 receptors by sequential binding of IP3 and Ca2+ safeguards against spontaneous activity. Current biology : CB. 7 [PubMed]

Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]

Mateos JM et al. (2000). Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor 1 at parallel fiber-Purkinje cell synapses in the rat cerebellar cortex. Journal of neurochemistry. 74 [PubMed]

Miyakawa H, Lev-Ram V, Lasser-Ross N, Ross WN. (1992). Calcium transients evoked by climbing fiber and parallel fiber synaptic inputs in guinea pig cerebellar Purkinje neurons. Journal of neurophysiology. 68 [PubMed]

Miyata M et al. (2000). Local calcium release in dendritic spines required for long-term synaptic depression. Neuron. 28 [PubMed]

Rose CR, Konnerth A. (2001). Stores not just for storage. intracellular calcium release and synaptic plasticity. Neuron. 31 [PubMed]

Sabatini BL, Oertner TG, Svoboda K. (2002). The life cycle of Ca(2+) ions in dendritic spines. Neuron. 33 [PubMed]

Sabatini BL, Svoboda K. (2000). Analysis of calcium channels in single spines using optical fluctuation analysis. Nature. 408 [PubMed]

Schreurs BG, Oh MM, Alkon DL. (1996). Pairing-specific long-term depression of Purkinje cell excitatory postsynaptic potentials results from a classical conditioning procedure in the rabbit cerebellar slice. Journal of neurophysiology. 75 [PubMed]

Stuart G, Häusser M. (1994). Initiation and spread of sodium action potentials in cerebellar Purkinje cells. Neuron. 13 [PubMed]

Sugiyama T et al. (1999). Localization of phospholipase Cbeta isozymes in the mouse cerebellum. Biochemical and biophysical research communications. 265 [PubMed]

Tanaka J et al. (2000). Gq protein alpha subunits Galphaq and Galpha11 are localized at postsynaptic extra-junctional membrane of cerebellar Purkinje cells and hippocampal pyramidal cells. The European journal of neuroscience. 12 [PubMed]

Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio MR. (2000). Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice. The European journal of neuroscience. 12 [PubMed]

Vetter P, Roth A, Häusser M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of neurophysiology. 85 [PubMed]

Wang SS, Denk W, Häusser M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature neuroscience. 3 [PubMed]

Xu T, Naraghi M, Kang H, Neher E. (1997). Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophysical journal. 73 [PubMed]

Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M. (2002). Computational studies on acquisition and adaptation of ocular following responses based on cerebellar synaptic plasticity. Journal of neurophysiology. 87 [PubMed]

References and models that cite this paper

Antunes G, De Schutter E. (2012). A stochastic signaling network mediates the probabilistic induction of cerebellar long-term depression. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Anwar H, Hong S, De Schutter E. (2012). Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum (London, England). 11 [PubMed]

Ashhad S, Narayanan R. (2013). Quantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity. The Journal of physiology. 591 [PubMed]

Chen W, De Schutter E. (2014). Python-based geometry preparation and simulation visualization toolkits for STEPS. Frontiers in neuroinformatics. 8 [PubMed]

Gallimore AR, Kim T, Tanaka-Yamamoto K, De Schutter E. (2018). Switching On Depression and Potentiation in the Cerebellum. Cell reports. 22 [PubMed]

Hituri K, Linne ML. (2013). Comparison of models for IP3 receptor kinetics using stochastic simulations. PloS one. 8 [PubMed]

Manita S, Ross WN. (2010). IP(3) mobilization and diffusion determine the timing window of Ca(2+) release by synaptic stimulation and a spike in rat CA1 pyramidal cells. Hippocampus. 20 [PubMed]

Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML. (2010). Postsynaptic signal transduction models for long-term potentiation and depression. Frontiers in computational neuroscience. 4 [PubMed]

Roberts PD. (2007). Stability of complex spike timing-dependent plasticity in cerebellar learning. Journal of computational neuroscience. 22 [PubMed]

Sterratt DC, Graham B, Gillies A, Willshaw D. (2011). Principles of Computational Modelling in Neuroscience, Cambridge University Press.

Urakubo H, Honda M, Froemke RC, Kuroda S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Wetmore DZ, Mukamel EA, Schnitzer MJ. (2008). Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. Journal of neurophysiology. 100 [PubMed]

Zamora Chimal CG, De Schutter E. (2018). Ca2+ Requirements for Long-Term Depression Are Frequency Sensitive in Purkinje Cells. Frontiers in molecular neuroscience. 11 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.