White JA, Banks MI, Pearce RA, Kopell NJ. (2000). Networks of interneurons with fast and slow gamma-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proceedings of the National Academy of Sciences of the United States of America. 97 [PubMed]

See more from authors: White JA · Banks MI · Pearce RA · Kopell NJ

References and models cited by this paper
References and models that cite this paper

Aradi I, Santhakumar V, Chen K, Soltesz I. (2002). Postsynaptic effects of GABAergic synaptic diversity: regulation of neuronal excitability by changes in IPSC variance. Neuropharmacology. 43 [PubMed]

Aradi I, Santhakumar V, Soltesz I. (2004). Impact of heterogeneous perisomatic IPSC populations on pyramidal cell firing rates. Journal of neurophysiology. 91 [PubMed]

Aradi I, Soltesz I. (2002). Modulation of network behaviour by changes in variance in interneuronal properties. The Journal of physiology. 538 [PubMed]

Baker PM, Pennefather PS, Orser BA, Skinner FK. (2002). Disruption of coherent oscillations in inhibitory networks with anesthetics: role of GABA(A) receptor desensitization. Journal of neurophysiology. 88 [PubMed]

Bartos M et al. (2002). Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Bhalla US. (2002). Biochemical signaling networks decode temporal patterns of synaptic input. Journal of computational neuroscience. 13 [PubMed]

Blackwell KT. (2006). Ionic currents underlying difference in light response between type A and type B photoreceptors. Journal of neurophysiology. 95 [PubMed]

Börgers C, Kopell NJ. (2008). Gamma oscillations and stimulus selection. Neural computation. 20 [PubMed]

Ferguson KA, Huh CY, Amilhon B, Williams S, Skinner FK. (2013). Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Frontiers in computational neuroscience. 7 [PubMed]

Hajós M, Hoffmann WE, Orbán G, Kiss T, Erdi P. (2004). Modulation of septo-hippocampal Theta activity by GABAA receptors: an experimental and computational approach. Neuroscience. 126 [PubMed]

Kopell N, Borgers C, Pervouchine D, Tort AB, Malerba P. (2010). Gamma and theta rhythms in biophysical models of hippocampal circuits Hippocampal Microcircuits: A Computational Modeller`s Resource Book. Ch. 15..

Neymotin SA et al. (2013). Ih tunes theta/gamma oscillations and cross-frequency coupling in an in silico CA3 model. PloS one. 8 [PubMed]

Neymotin SA et al. (2011). Ketamine disrupts ? modulation of ? in a computer model of hippocampus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Neymotin SA et al. (2011). Ketamine Disrupts Theta Modulation of Gamma in a Computer Model of Hippocampus The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Neymotin SA et al. (2016). Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience. 316 [PubMed]

Rotstein HG et al. (2005). Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. Journal of neurophysiology. 94 [PubMed]

Tiesinga PH, Sejnowski TJ. (2004). Rapid temporal modulation of synchrony by competition in cortical interneuron networks. Neural computation. 16 [PubMed]

Wendling F, Hernandez A, Bellanger JJ, Chauvel P, Bartolomei F. (2005). Interictal to ictal transition in human temporal lobe epilepsy: insights from a computational model of intracerebral EEG. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 22 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.