Yamazaki T, Tanaka S. (2007). The cerebellum as a liquid state machine. Neural networks : the official journal of the International Neural Network Society. 20 [PubMed]

See more from authors: Yamazaki T · Tanaka S

References and models cited by this paper
References and models that cite this paper

Casellato C et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar network. PloS one. 9 [PubMed]

Garrido JA, Luque NR, D'Angelo E, Ros E. (2013). Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Frontiers in neural circuits. 7 [PubMed]

Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]

Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A. (2018). A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. International journal of neural systems. 28 [PubMed]

Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]

Rössert C, Dean P, Porrill J. (2015). At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters. PLoS computational biology. 11 [PubMed]

Wilson CJ, Beverlin B, Netoff T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in systems neuroscience. 5 [PubMed]

Yamazaki T, Nagao S. (2012). A computational mechanism for unified gain and timing control in the cerebellum. PloS one. 7 [PubMed]

Yamazaki T, Tanaka S. (2007). A spiking network model for passage-of-time representation in the cerebellum. The European journal of neuroscience. 26 [PubMed]

Yamazaki T, Tanaka S. (2009). Robust Reservoir Generation by Correlation-Based Learning Advances in Artificial Neural Systems. 2009

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.