Aizenman CD, Linden DJ. (2000). Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature neuroscience. 3 [PubMed]

See more from authors: Aizenman CD · Linden DJ

References and models cited by this paper
References and models that cite this paper

Florian RV. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural computation. 19 [PubMed]

Häusser M, Monsivais P. (2003). Less means more: inhibition of spontaneous firing triggers persistent increases in excitability. Neuron. 40 [PubMed]

Häusser M, Spruston N, Stuart GJ. (2000). Diversity and dynamics of dendritic signaling. Science (New York, N.Y.). 290 [PubMed]

Kanold PO, Manis PB. (2001). A physiologically based model of discharge pattern regulation by transient K+ currents in cochlear nucleus pyramidal cells. Journal of neurophysiology. 85 [PubMed]

Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D. (2011). Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. Journal of computational neuroscience. 30 [PubMed]

Venkadesh S et al. (2018). Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types. Frontiers in neuroinformatics. 12 [PubMed]

Wetmore DZ, Mukamel EA, Schnitzer MJ. (2008). Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. Journal of neurophysiology. 100 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.