Aizenman CD, Linden DJ. (2000). Rapid, synaptically driven increases in the intrinsic excitability of cerebellar deep nuclear neurons. Nature neuroscience. 3 [PubMed]
Attwell D, Laughlin SB. (2001). An energy budget for signaling in the grey matter of the brain. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 21 [PubMed]
Avanzini G, de Curtis M, Panzica F, Spreafico R. (1989). Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro. The Journal of physiology. 416 [PubMed]
Chance FS, Abbott LF, Reyes AD. (2002). Gain modulation from background synaptic input. Neuron. 35 [PubMed]
Desai NS, Rutherford LC, Turrigiano GG. (1999). Plasticity in the intrinsic excitability of cortical pyramidal neurons. Nature neuroscience. 2 [PubMed]
Feigenspan A, Gustincich S, Bean BP, Raviola E. (1998). Spontaneous activity of solitary dopaminergic cells of the retina. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]
Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]
Llinás RR. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (New York, N.Y.). 242 [PubMed]
Marder E, Prinz AA. (2002). Modeling stability in neuron and network function: the role of activity in homeostasis. BioEssays : news and reviews in molecular, cellular and developmental biology. 24 [PubMed]
McCormick DA, Pape HC. (1990). Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. The Journal of physiology. 431 [PubMed]
Nelson AB, Krispel CM, Sekirnjak C, du Lac S. (2003). Long-lasting increases in intrinsic excitability triggered by inhibition. Neuron. 40 [PubMed]
Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM. (2002). Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature. 416 [PubMed]
Raman IM, Bean BP. (1997). Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Raman IM, Gustafson AE, Padgett D. (2000). Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Smith MR, Nelson AB, Du Lac S. (2002). Regulation of firing response gain by calcium-dependent mechanisms in vestibular nucleus neurons. Journal of neurophysiology. 87 [PubMed]
Smith SL, Otis TS. (2003). Persistent changes in spontaneous firing of Purkinje neurons triggered by the nitric oxide signaling cascade. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Taddese A, Bean BP. (2002). Subthreshold sodium current from rapidly inactivating sodium channels drives spontaneous firing of tuberomammillary neurons. Neuron. 33 [PubMed]
du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG. (1995). Learning and memory in the vestibulo-ocular reflex. Annual review of neuroscience. 18 [PubMed]