Pennartz CM, de Jeu MT, Bos NP, Schaap J, Geurtsen AM. (2002). Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature. 416 [PubMed]

See more from authors: Pennartz CM · de Jeu MT · Bos NP · Schaap J · Geurtsen AM

References and models cited by this paper
References and models that cite this paper

Diekman CO, Wei N. (2021). Circadian Rhythms of Early Afterdepolarizations and Ventricular Arrhythmias in a Cardiomyocyte Model. Biophysical journal. 120 [PubMed]

Häusser M, Monsivais P. (2003). Less means more: inhibition of spontaneous firing triggers persistent increases in excitability. Neuron. 40 [PubMed]

Häusser M et al. (2004). The beat goes on: spontaneous firing in mammalian neuronal microcircuits. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Paul JR et al. (2016). Regulation of persistent sodium currents by glycogen synthase kinase 3 encodes daily rhythms of neuronal excitability. Nature communications. 7 [PubMed]

Sim CK, Forger DB. (2007). Modeling the electrophysiology of suprachiasmatic nucleus neurons. Journal of biological rhythms. 22 [PubMed]

Smith P, Buhl E, Tsaneva-Atanasova K, Hodge JJL. (2019). Shaw and Shal voltage-gated potassium channels mediate circadian changes in Drosophila clock neuron excitability. The Journal of physiology. 597 [PubMed]

Vasalou C, Henson MA. (2010). A multiscale model to investigate circadian rhythmicity of pacemaker neurons in the suprachiasmatic nucleus. PLoS computational biology. 6 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.