Phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is a minor phospholipid in the cytoplasmic leaflet of the plasma membrane. Depletion of PI(4,5)P2 via phospholipase C-mediated hydrolysis leads to a decrease in exocytosis and alters electrical excitability in neurons. Restoration of PI(4,5)P2 is essential for a return to basal neuronal activity. However, the dynamics of phosphoinositide metabolism have not been analyzed in neurons. We studied the dynamics of phosphoinositide metabolism in sympathetic neu- rons upon muscarinic stimulation and used the kinetic information to develop a quantitative description of neuronal phospho- inositide metabolism. The measurements and analysis show a several-fold faster synthesis of PI(4,5)P2 in sympathetic neurons than in an electrically nonexcitable cell line, and provide a framework for future studies of PI(4,5)P2-dependent processes in neurons.
Currents: I M
Receptors: M1
Transmitters: Acetylcholine
Simulation Environment: Virtual Cell (web link to model)
Implementer(s): Kruse, Martin [mkruse at uw.edu]
References:
Kruse M, Vivas O, Traynor-Kaplan A, Hille B. (2016). Dynamics of Phosphoinositide-Dependent Signaling in Sympathetic Neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]