Half-center oscillator database of leech heart interneuron model (Doloc-Mihu & Calabrese 2011)


Doloc-Mihu A, Calabrese RL. (2011). A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. Journal of biological physics. 37 [PubMed]

See more from authors: Doloc-Mihu A · Calabrese RL

References and models cited by this paper

Bhalla US, Bower JM. (1993). Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. Journal of neurophysiology. 69 [PubMed]

Calin-Jageman RJ, Tunstall MJ, Mensh BD, Katz PS, Frost WN. (2007). Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. Journal of neurophysiology. 98 [PubMed]

Cymbalyuk GS, Gaudry Q, Masino MA, Calabrese RL. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

De Schutter E, Ekeberg O, Kotaleski JH, Achard P, Lansner A. (2005). Biophysically detailed modelling of microcircuits and beyond. Trends in neurosciences. 28 [PubMed]

Günay C, Edgerton JR, Jaeger D. (2008). Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Günay C et al. (2009). Database analysis of simulated and recorded electrophysiological datasets with PANDORA's toolbox. Neuroinformatics. 7 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of computational neuroscience. 10 [PubMed]

Kristan WB, Calabrese RL, Friesen WO. (2005). Neuronal control of leech behavior. Progress in neurobiology. 76 [PubMed]

Marder E, Bucher D, Schulz DJ, Taylor AL. (2005). Invertebrate central pattern generation moves along. Current biology : CB. 15 [PubMed]

Marder E, Calabrese RL. (1996). Principles of rhythmic motor pattern generation. Physiological reviews. 76 [PubMed]

Marder E, Goaillard JM. (2006). Variability, compensation and homeostasis in neuron and network function. Nature reviews. Neuroscience. 7 [PubMed]

Olypher AV, Calabrese RL. (2007). Using constraints on neuronal activity to reveal compensatory changes in neuronal parameters. Journal of neurophysiology. 98 [PubMed]

Prinz AA. (2006). Insights from models of rhythmic motor systems. Current opinion in neurobiology. 16 [PubMed]

Prinz AA, Billimoria CP, Marder E. (2003). Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. Journal of neurophysiology. 90 [PubMed]

Prinz AA, Bucher D, Marder E. (2004). Similar network activity from disparate circuit parameters. Nature neuroscience. 7 [PubMed]

Wenning A, Cymbalyuk GS, Calabrese RL. (2004). Heartbeat control in leeches. I. Constriction pattern and neural modulation of blood pressure in intact animals. Journal of neurophysiology. 91 [PubMed]

References and models that cite this paper

Carlu M et al. (2020). A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin-Huxley models. Journal of neurophysiology. 123 [PubMed]

Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

Günay C, Doloc-Mihu A, Lamb DG, Calabrese RL. (2019). Synaptic Strengths Dominate Phasing of Motor Circuit: Intrinsic Conductances of Neuron Types Need Not Vary across Animals. eNeuro. 6 [PubMed]

Neymotin SA et al. (2017). Optimizing computer models of corticospinal neurons to replicate in vitro dynamics. Journal of neurophysiology. 117 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.