Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

See more from authors: Geminiani A · Casellato C · Locatelli F · Prestori F · Pedrocchi A · D'Angelo E

References and models cited by this paper

Benda J, Maler L, Longtin A. (2010). Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of neurophysiology. 104 [PubMed]

Brette R, Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology. 94 [PubMed]

Brunel N, Hakim V, Richardson MJ. (2003). Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Physical review. E, Statistical, nonlinear, and soft matter physics. 67 [PubMed]

Burkitt AN. (2006). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological cybernetics. 95 [PubMed]

Buzsáki G. (2004). Large-scale recording of neuronal ensembles. Nature neuroscience. 7 [PubMed]

Buzsáki G, Draguhn A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.). 304 [PubMed]

Casellato C et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar network. PloS one. 9 [PubMed]

Cavallari S, Panzeri S, Mazzoni A. (2014). Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers in neural circuits. 8 [PubMed]

Cerminara NL, Rawson JA. (2004). Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Cesana E et al. (2013). Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

D'Angelo E. (2008). The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Frontiers in neuroscience. 2 [PubMed]

D'Angelo E et al. (2016). Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum (London, England). 15 [PubMed]

D'Angelo E et al. (2013). The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Frontiers in neural circuits. 7 [PubMed]

Destexhe A, Bal T, McCormick DA, Sejnowski TJ. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of neurophysiology. 76 [PubMed]

Doloc-Mihu A, Calabrese RL. (2011). A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. Journal of biological physics. 37 [PubMed]

Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. (2008). PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in neuroinformatics. 2 [PubMed]

Fitzhugh R. (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophysical journal. 1 [PubMed]

Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]

Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. (2013). ?-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in neural circuits. 7 [PubMed]

Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A. (2018). A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. International journal of neural systems. 28 [PubMed]

Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

Gerstner W, Naud R. (2009). Neuroscience. How good are neuron models? Science (New York, N.Y.). 326 [PubMed]

Guckenheimer J, Gueron S, Harris-Warrick RM. (1993). Mapping the dynamics of a bursting neuron. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 341 [PubMed]

Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M. (2010). A general and efficient method for incorporating precise spike times in globally time-driven simulations. Frontiers in neuroinformatics. 4 [PubMed]

Hertäg L, Hass J, Golovko T, Durstewitz D. (2012). An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data. Frontiers in computational neuroscience. 6 [PubMed]

Herz AV, Gollisch T, Machens CK, Jaeger D. (2006). Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science (New York, N.Y.). 314 [PubMed]

Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of computational neuroscience. 10 [PubMed]

Hindmarsh JL, Rose RM. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London. Series B, Biological sciences. 221 [PubMed]

Hutcheon B, Yarom Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in neurosciences. 23 [PubMed]

Izhikevich EM. (2003). Simple model of spiking neurons. IEEE transactions on neural networks. 14 [PubMed]

Izhikevich EM. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural networks. 15 [PubMed]

Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]

Jordan J et al. (2018). Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in neuroinformatics. 12 [PubMed]

Marasco A, Limongiello A, Migliore M. (2012). Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Scientific reports. 2 [PubMed]

Markram H. (2013). Seven challenges for neuroscience. Functional neurology. 28 [PubMed]

Markram H et al. (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 163 [PubMed]

Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Migliore M, Novara G, Tegolo D. (2008). Single neuron binding properties and the magical number 7. Hippocampus. 18 [PubMed]

Mihalaş S, Niebur E. (2009). A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural computation. 21 [PubMed]

Pozzorini C et al. (2015). Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models. PLoS computational biology. 11 [PubMed]

RALL W. (1962). Electrophysiology of a dendritic neuron model. Biophysical journal. 2 [PubMed]

Richardson MJ, Brunel N, Hakim V. (2003). From subthreshold to firing-rate resonance. Journal of neurophysiology. 89 [PubMed]

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]

Teeter C et al. (2018). Generalized leaky integrate-and-fire models classify multiple neuron types. Nature communications. 9 [PubMed]

Tiesinga P, Bakker R, Hill S, Bjaalie JG. (2015). Feeding the human brain model. Current opinion in neurobiology. 32 [PubMed]

Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC. (2014). NeuroElectro: a window to the world's neuron electrophysiology data. Frontiers in neuroinformatics. 8 [PubMed]

Venkadesh S et al. (2018). Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types. Frontiers in neuroinformatics. 12 [PubMed]

References and models that cite this paper

Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. (2019). Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Frontiers in computational neuroscience. 13 [PubMed]

Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]

Marasco A et al. (2023). An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bulletin of mathematical biology. 85 [PubMed]

Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.