Benda J, Maler L, Longtin A. (2010). Linear versus nonlinear signal transmission in neuron models with adaptation currents or dynamic thresholds. Journal of neurophysiology. 104 [PubMed]
Brette R, Gerstner W. (2005). Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. Journal of neurophysiology. 94 [PubMed]
Brunel N, Hakim V, Richardson MJ. (2003). Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Physical review. E, Statistical, nonlinear, and soft matter physics. 67 [PubMed]
Burkitt AN. (2006). A review of the integrate-and-fire neuron model: I. Homogeneous synaptic input. Biological cybernetics. 95 [PubMed]
Buzsáki G. (2004). Large-scale recording of neuronal ensembles. Nature neuroscience. 7 [PubMed]
Buzsáki G, Draguhn A. (2004). Neuronal oscillations in cortical networks. Science (New York, N.Y.). 304 [PubMed]
Casellato C et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar network. PloS one. 9 [PubMed]
Cavallari S, Panzeri S, Mazzoni A. (2014). Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers in neural circuits. 8 [PubMed]
Cerminara NL, Rawson JA. (2004). Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Cesana E et al. (2013). Granule cell ascending axon excitatory synapses onto Golgi cells implement a potent feedback circuit in the cerebellar granular layer. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
D'Angelo E. (2008). The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Frontiers in neuroscience. 2 [PubMed]
D'Angelo E et al. (2016). Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum (London, England). 15 [PubMed]
D'Angelo E et al. (2013). The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Frontiers in neural circuits. 7 [PubMed]
Destexhe A, Bal T, McCormick DA, Sejnowski TJ. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of neurophysiology. 76 [PubMed]
Doloc-Mihu A, Calabrese RL. (2011). A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. Journal of biological physics. 37 [PubMed]
Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. (2008). PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in neuroinformatics. 2 [PubMed]
Fitzhugh R. (1961). Impulses and Physiological States in Theoretical Models of Nerve Membrane. Biophysical journal. 1 [PubMed]
Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]
Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. (2013). ?-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in neural circuits. 7 [PubMed]
Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A. (2018). A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. International journal of neural systems. 28 [PubMed]
Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]
Gerstner W, Naud R. (2009). Neuroscience. How good are neuron models? Science (New York, N.Y.). 326 [PubMed]
Guckenheimer J, Gueron S, Harris-Warrick RM. (1993). Mapping the dynamics of a bursting neuron. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 341 [PubMed]
Hanuschkin A, Kunkel S, Helias M, Morrison A, Diesmann M. (2010). A general and efficient method for incorporating precise spike times in globally time-driven simulations. Frontiers in neuroinformatics. 4 [PubMed]
Hertäg L, Hass J, Golovko T, Durstewitz D. (2012). An Approximation to the Adaptive Exponential Integrate-and-Fire Neuron Model Allows Fast and Predictive Fitting to Physiological Data. Frontiers in computational neuroscience. 6 [PubMed]
Herz AV, Gollisch T, Machens CK, Jaeger D. (2006). Modeling single-neuron dynamics and computations: a balance of detail and abstraction. Science (New York, N.Y.). 314 [PubMed]
Hill AA, Lu J, Masino MA, Olsen OH, Calabrese RL. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of computational neuroscience. 10 [PubMed]
Hindmarsh JL, Rose RM. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London. Series B, Biological sciences. 221 [PubMed]
Hutcheon B, Yarom Y. (2000). Resonance, oscillation and the intrinsic frequency preferences of neurons. Trends in neurosciences. 23 [PubMed]
Izhikevich EM. (2003). Simple model of spiking neurons. IEEE transactions on neural networks. 14 [PubMed]
Izhikevich EM. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural networks. 15 [PubMed]
Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]
Jordan J et al. (2018). Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in neuroinformatics. 12 [PubMed]
Marasco A, Limongiello A, Migliore M. (2012). Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Scientific reports. 2 [PubMed]
Markram H. (2013). Seven challenges for neuroscience. Functional neurology. 28 [PubMed]
Markram H et al. (2015). Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 163 [PubMed]
Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]
Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]
Migliore M, Novara G, Tegolo D. (2008). Single neuron binding properties and the magical number 7. Hippocampus. 18 [PubMed]
Mihalaş S, Niebur E. (2009). A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural computation. 21 [PubMed]
Pozzorini C et al. (2015). Automated High-Throughput Characterization of Single Neurons by Means of Simplified Spiking Models. PLoS computational biology. 11 [PubMed]
RALL W. (1962). Electrophysiology of a dendritic neuron model. Biophysical journal. 2 [PubMed]
Richardson MJ, Brunel N, Hakim V. (2003). From subthreshold to firing-rate resonance. Journal of neurophysiology. 89 [PubMed]
Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]
Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]
Teeter C et al. (2018). Generalized leaky integrate-and-fire models classify multiple neuron types. Nature communications. 9 [PubMed]
Tiesinga P, Bakker R, Hill S, Bjaalie JG. (2015). Feeding the human brain model. Current opinion in neurobiology. 32 [PubMed]
Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC. (2014). NeuroElectro: a window to the world's neuron electrophysiology data. Frontiers in neuroinformatics. 8 [PubMed]
Venkadesh S et al. (2018). Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types. Frontiers in neuroinformatics. 12 [PubMed]
Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. (2019). Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Frontiers in computational neuroscience. 13 [PubMed]
Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]
Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]
Marasco A et al. (2023). An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bulletin of mathematical biology. 85 [PubMed]
Masoli S, Ottaviani A, Casali S, D'Angelo E. (2020). Cerebellar Golgi cell models predict dendritic processing and mechanisms of synaptic plasticity. PLoS computational biology. 16 [PubMed]