Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]

See more from authors: Geminiani A · Pedrocchi A · D'Angelo E · Casellato C

References and models cited by this paper

Best AR, Regehr WG. (2009). Inhibitory regulation of electrically coupled neurons in the inferior olive is mediated by asynchronous release of GABA. Neuron. 62 [PubMed]

Casali S, Marenzi E, Medini C, Casellato C, D'Angelo E. (2019). Reconstruction and Simulation of a Scaffold Model of the Cerebellar Network. Frontiers in neuroinformatics. 13 [PubMed]

Casellato C et al. (2014). Adaptive robotic control driven by a versatile spiking cerebellar network. PloS one. 9 [PubMed]

Cavallari S, Panzeri S, Mazzoni A. (2014). Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers in neural circuits. 8 [PubMed]

Cerminara NL, Rawson JA. (2004). Evidence that climbing fibers control an intrinsic spike generator in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

D'Angelo E. (2014). The organization of plasticity in the cerebellar cortex: from synapses to control. Progress in brain research. 210 [PubMed]

D'Angelo E et al. (2016). Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue. Frontiers in cellular neuroscience. 10 [PubMed]

D'Angelo E, Casali S. (2012). Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in neural circuits. 6 [PubMed]

D'Angelo E et al. (2013). The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Frontiers in neural circuits. 7 [PubMed]

Davie JT, Clark BA, Häusser M. (2008). The origin of the complex spike in cerebellar Purkinje cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

De Zeeuw CI et al. (2011). Spatiotemporal firing patterns in the cerebellum. Nature reviews. Neuroscience. 12 [PubMed]

Dean P, Porrill J. (2011). Evaluating the adaptive-filter model of the cerebellum. The Journal of physiology. 589 [PubMed]

Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]

Eppler JM, Helias M, Muller E, Diesmann M, Gewaltig MO. (2008). PyNEST: A Convenient Interface to the NEST Simulator. Frontiers in neuroinformatics. 2 [PubMed]

Feng SS, Lin R, Gauck V, Jaeger D. (2013). Gain control of synaptic response function in cerebellar nuclear neurons by a calcium-activated potassium conductance. Cerebellum (London, England). 12 [PubMed]

Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. (2013). ?-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in neural circuits. 7 [PubMed]

Gao Z, van Beugen BJ, De Zeeuw CI. (2012). Distributed synergistic plasticity and cerebellar learning. Nature reviews. Neuroscience. 13 [PubMed]

Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A. (2018). A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. International journal of neural systems. 28 [PubMed]

Geminiani A, Casellato C, D'Angelo E, Pedrocchi A. (2019). Complex Electroresponsive Dynamics in Olivocerebellar Neurons Represented With Extended-Generalized Leaky Integrate and Fire Models. Frontiers in computational neuroscience. 13 [PubMed]

Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]

Hahne J et al. (2015). A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations. Frontiers in neuroinformatics. 9 [PubMed]

Hansel C, Linden DJ, D'Angelo E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature neuroscience. 4 [PubMed]

He Q et al. (2015). Interneuron- and GABA(A) receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells. Nature communications. 6 [PubMed]

Heck DH, De Zeeuw CI, Jaeger D, Khodakhah K, Person AL. (2013). The neuronal code(s) of the cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]

Heiney SA, Kim J, Augustine GJ, Medina JF. (2014). Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]

Herzfeld DJ, Kojima Y, Soetedjo R, Shadmehr R. (2015). Encoding of action by the Purkinje cells of the cerebellum. Nature. 526 [PubMed]

Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. (2010). Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy of Sciences of the United States of America. 107 [PubMed]

Jirenhed DA, Bengtsson F, Hesslow G. (2007). Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Jörntell H, Bengtsson F, Schonewille M, De Zeeuw CI. (2010). Cerebellar molecular layer interneurons - computational properties and roles in learning. Trends in neurosciences. 33 [PubMed]

Kanichay RT, Silver RA. (2008). Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Latorre R, Aguirre C, Rabinovich MI, Varona P. (2013). Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns. Frontiers in neural circuits. 7 [PubMed]

Lein ES et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature. 445 [PubMed]

Leznik E, Llinás R. (2005). Role of gap junctions in synchronized neuronal oscillations in the inferior olive. Journal of neurophysiology. 94 [PubMed]

Llinás RR. (2013). The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties. Frontiers in neural circuits. 7 [PubMed]

Luque NR, Naveros F, Carrillo RR, Ros E, Arleo A. (2019). Spike burst-pause dynamics of Purkinje cells regulate sensorimotor adaptation. PLoS computational biology. 15 [PubMed]

Maex R, De Schutter E. (1998). Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. Journal of neurophysiology. 80 [PubMed]

Mapelli L, Rossi P, Nieus T, D'Angelo E. (2009). Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. Journal of neurophysiology. 101 [PubMed]

Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]

Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]

Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]

Morissette J, Bower JM. (1996). Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Experimental brain research. 109 [PubMed]

Powell K, Mathy A, Duguid I, Häusser M. (2015). Synaptic representation of locomotion in single cerebellar granule cells. eLife. 4 [PubMed]

Prestori F et al. (2008). Altered neuron excitability and synaptic plasticity in the cerebellar granular layer of juvenile prion protein knock-out mice with impaired motor control. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Pugh JR, Raman IM. (2006). Potentiation of mossy fiber EPSCs in the cerebellar nuclei by NMDA receptor activation followed by postinhibitory rebound current. Neuron. 51 [PubMed]

Rancz EA et al. (2007). High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature. 450 [PubMed]

Ruigrok TJ. (2011). Ins and outs of cerebellar modules. Cerebellum (London, England). 10 [PubMed]

Schonewille M et al. (2010). Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron. 67 [PubMed]

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

Ten Brinke MM et al. (2017). Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. eLife. 6 [PubMed]

Uusisaari M, De Schutter E. (2011). The mysterious microcircuitry of the cerebellar nuclei. The Journal of physiology. 589 [PubMed]

Uusisaari M, Knöpfel T. (2008). GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience. 156 [PubMed]

Voogd J, Glickstein M. (1998). The anatomy of the cerebellum. Trends in cognitive sciences. 2 [PubMed]

Yamazaki T, Igarashi J. (2013). Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit. Neural networks : the official journal of the International Neural Network Society. 47 [PubMed]

Zheng N, Raman IM. (2010). Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Cerebellum (London, England). 9 [PubMed]

Zhou H et al. (2014). Cerebellar modules operate at different frequencies. eLife. 3 [PubMed]

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.