Albus JS. (1971). A theory of cerebellar function Math Biosci. 10
Amari S, Cichocki A. (2003). Adaptive blind signal and image processing: Learning algorithms and applications.
Andreescu CE et al. (2011). NR2A subunit of the N-methyl D-aspartate receptors are required for potentiation at the mossy fiber to granule cell synapse and vestibulo-cerebellar motor learning. Neuroscience. 176 [PubMed]
Angelaki DE, Hess BJ. (1994). The cerebellar nodulus and ventral uvula control the torsional vestibulo-ocular reflex. Journal of neurophysiology. 72 [PubMed]
Antic SD. (2003). Action potentials in basal and oblique dendrites of rat neocortical pyramidal neurons. The Journal of physiology. 550 [PubMed]
Armano S, Rossi P, Taglietti V, D'Angelo E. (2000). Long-term potentiation of intrinsic excitability at the mossy fiber-granule cell synapse of rat cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Bower JM, Woolston DC. (1983). Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. Journal of neurophysiology. 49 [PubMed]
Brickley SG, Cull-Candy SG, Farrant M. (1996). Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. The Journal of physiology. 497 ( Pt 3) [PubMed]
Bédard C, Kröger H, Destexhe A. (2004). Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophysical journal. 86 [PubMed]
Cardoso JF, Souloumiac A. (1993). Blind beamforming for non-gaussian signals Proc IEEE. 140
Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]
D'Angelo E. (2008). The critical role of Golgi cells in regulating spatio-temporal integration and plasticity at the cerebellum input stage. Frontiers in neuroscience. 2 [PubMed]
D'Angelo E. (2010). Rebuilding cerebellar network computations from cellular neurophysiology. Frontiers in cellular neuroscience. 4 [PubMed]
D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1995). Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. The Journal of physiology. 484 ( Pt 2) [PubMed]
D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1998). Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. Journal of neurophysiology. 80 [PubMed]
D'Angelo E, De Zeeuw CI. (2009). Timing and plasticity in the cerebellum: focus on the granular layer. Trends in neurosciences. 32 [PubMed]
D'Angelo E et al. (2009). Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience. 162 [PubMed]
D'Angelo E et al. (2011). The cerebellar network: from structure to function and dynamics. Brain research reviews. 66 [PubMed]
D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
D'Angelo E, Rossi P, Armano S, Taglietti V. (1999). Evidence for NMDA and mGlu receptor-dependent long-term potentiation of mossy fiber-granule cell transmission in rat cerebellum. Journal of neurophysiology. 81 [PubMed]
D'Errico A, Prestori F, D'Angelo E. (2009). Differential induction of bidirectional long-term changes in neurotransmitter release by frequency-coded patterns at the cerebellar input. The Journal of physiology. 587 [PubMed]
Daoudal G, Debanne D. (2003). Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learning & memory (Cold Spring Harbor, N.Y.). 10 [PubMed]
Debanne D. (1996). Associative synaptic plasticity in hippocampus and visual cortex: cellular mechanisms and functional implications. Reviews in the neurosciences. 7 [PubMed]
Dieudonne S. (1998). Submillisecond kinetics and low efficacy of parallel fibre-Golgi cell synaptic currents in the rat cerebellum. The Journal of physiology. 510 ( Pt 3) [PubMed]
Diwakar S, Magistretti J, Goldfarb M, Naldi G, D'Angelo E. (2009). Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. Journal of neurophysiology. 101 [PubMed]
Diwakar S, Soman K, Ajay V. (2006). Insight into data mining (theory and practice).
Dover K, Solinas S, D'Angelo E, Goldfarb M. (2010). Long-term inactivation particle for voltage-gated sodium channels. The Journal of physiology. 588 [PubMed]
Dugué GP et al. (2009). Electrical coupling mediates tunable low-frequency oscillations and resonance in the cerebellar Golgi cell network. Neuron. 61 [PubMed]
Eccles JC, Sasaki K, Strata P. (1967). Interpretation of the potential fields generated in the cerebellar cortex by a mossy fibre volley. Experimental brain research. 3 [PubMed]
Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]
Gall D et al. (2005). Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]
Gall D et al. (2003). Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Gold C, Henze DA, Koch C. (2007). Using extracellular action potential recordings to constrain compartmental models. Journal of computational neuroscience. 23 [PubMed]
Gold C, Henze DA, Koch C, Buzsáki G. (2006). On the origin of the extracellular action potential waveform: A modeling study. Journal of neurophysiology. 95 [PubMed]
Goldfarb M et al. (2007). Fibroblast growth factor homologous factors control neuronal excitability through modulation of voltage-gated sodium channels. Neuron. 55 [PubMed]
Haberly LB, Shepherd GM. (1973). Current-density analysis of summed evoked potentials in opossum prepyriform cortex. Journal of neurophysiology. 36 [PubMed]
Hansel C, Linden DJ, D'Angelo E. (2001). Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature neuroscience. 4 [PubMed]
Harmsen J, Pearlman W. (2003). Steganalysis of additive-noise modelable information hiding. Proc SPIE. 5020
Harvey RJ, Napper RM. (1991). Quantitative studies on the mammalian cerebellum. Progress in neurobiology. 36 [PubMed]
Henze DA et al. (2000). Intracellular features predicted by extracellular recordings in the hippocampus in vivo. Journal of neurophysiology. 84 [PubMed]
Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]
Holtzman T, Rajapaksa T, Mostofi A, Edgley SA. (2006). Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. The Journal of physiology. 574 [PubMed]
Ito M. (2006). Cerebellar circuitry as a neuronal machine. Progress in neurobiology. 78 [PubMed]
Ito M, Eccles JC, Szentagothai J. (1967). The Cerebellum as a Neuronal Machine.
Jörntell H, Ekerot CF. (2006). Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Kanichay RT, Silver RA. (2008). Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Kase M, Miller DC, Noda H. (1980). Discharges of Purkinje cells and mossy fibres in the cerebellar vermis of the monkey during saccadic eye movements and fixation. The Journal of physiology. 300 [PubMed]
Koch C. (1999). Biophysics Of Computation: Information Processing in Single Neurons.
Llinas R, Hubbard JI, Quastel DMJ. (1969). Electrophysiological Analysis of Synaptic Transmission.
Lu H, Hartmann MJ, Bower JM. (2005). Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer. Journal of neurophysiology. 94 [PubMed]
López-Aguado L, Ibarz JM, Herreras O. (2001). Activity-dependent changes of tissue resistivity in the CA1 region in vivo are layer-specific: modulation of evoked potentials. Neuroscience. 108 [PubMed]
Magistretti J, Castelli L, Forti L, D'Angelo E. (2006). Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study. The Journal of physiology. 573 [PubMed]
Mapelli J, D'Angelo E. (2007). The spatial organization of long-term synaptic plasticity at the input stage of cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Mapelli J, Gandolfi D, D'Angelo E. (2010). Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. Journal of neurophysiology. 103 [PubMed]
Mapelli J, Gandolfi D, D'Angelo E. (2010). High-Pass Filtering and Dynamic Gain Regulation Enhance Vertical Bursts Transmission along the Mossy Fiber Pathway of Cerebellum. Frontiers in cellular neuroscience. 4 [PubMed]
Mapelli L, Rossi P, Nieus T, D'Angelo E. (2009). Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. Journal of neurophysiology. 101 [PubMed]
Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]
Morissette J, Bower JM. (1996). Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Experimental brain research. 109 [PubMed]
Nieus T et al. (2006). LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. Journal of neurophysiology. 95 [PubMed]
Rall W, Shepherd GM. (1968). Theoretical reconstruction of field potentials and dendrodendritic synaptic interactions in olfactory bulb. Journal of neurophysiology. 31 [PubMed]
Rancz EA et al. (2007). High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature. 450 [PubMed]
Roggeri L, Rivieccio B, Rossi P, D'Angelo E. (2008). Tactile stimulation evokes long-term synaptic plasticity in the granular layer of cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Saviane C, Silver RA. (2006). Fast vesicle reloading and a large pool sustain high bandwidth transmission at a central synapse. Nature. 439 [PubMed]
Schweighofer N, Doya K, Lay F. (2001). Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience. 103 [PubMed]
Shambes GM, Gibson JM, Welker W. (1978). Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain, behavior and evolution. 15 [PubMed]
Shepherd GM, Haberly LB. (1970). Partial activation of olfactory bulb: analysis of field potentials and topographical relation between bulb and lateral olfactory tract. Journal of neurophysiology. 33 [PubMed]
Silver RA, Cull-Candy SG, Takahashi T. (1996). Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. The Journal of physiology. 494 ( Pt 1) [PubMed]
Sola E, Prestori F, Rossi P, Taglietti V, D'Angelo E. (2004). Increased neurotransmitter release during long-term potentiation at mossy fibre-granule cell synapses in rat cerebellum. The Journal of physiology. 557 [PubMed]
Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]
Solinas S, Nieus T, D'Angelo E. (2010). A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Frontiers in cellular neuroscience. 4 [PubMed]
Stuart GJ, Sakmann B. (1994). Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature. 367 [PubMed]
Sultan F, Heck D. (2003). Detection of sequences in the cerebellar cortex: numerical estimate of the possible number of tidal-wave inducing sequences represented. Journal of physiology, Paris. 97 [PubMed]
Tahon K, Wijnants M, De Schutter E, Maex R. (2011). Current source density correlates of cerebellar Golgi and Purkinje cell responses to tactile input. Journal of neurophysiology. 105 [PubMed]
Thach WT. (1967). Somatosensory receptive fields of single units in cat cerebellar cortex. Journal of neurophysiology. 30 [PubMed]
Vervaeke K et al. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 67 [PubMed]
Volny-Luraghi A, Maex R, Vos B, De Schutter E. (2002). Peripheral stimuli excite coronal beams of Golgi cells in rat cerebellar cortex. Neuroscience. 113 [PubMed]
Vos BP, Volny-Luraghi A, De Schutter E. (1999). Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. The European journal of neuroscience. 11 [PubMed]
Welsh JP, Lang EJ, Suglhara I, Llinás R. (1995). Dynamic organization of motor control within the olivocerebellar system. Nature. 374 [PubMed]
Wu HS, Sugihara I, Shinoda Y. (1999). Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. The Journal of comparative neurology. 411 [PubMed]
van Kan PL, Gibson AR, Houk JC. (1993). Movement-related inputs to intermediate cerebellum of the monkey. Journal of neurophysiology. 69 [PubMed]
Diwakar S, Parasuram H, Nair B, Medini C, Nair M. (2017). Computational Neuroscience of Timing, Plasticity and Function in Cerebellum Microcircuits (Chapter 12) Computational Neurology and Psychiatry, Springer Series in Bio-/Neuroinformatics.
Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]
Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]
Parasuram H et al. (2016). Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim. Frontiers in computational neuroscience. 10 [PubMed]
Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]