Berends M, Maex R, De Schutter E. (2005). The effect of NMDA receptors on gain modulation. Neural computation. 17 [PubMed]
Cathala L, Brickley S, Cull-Candy S, Farrant M. (2003). Maturation of EPSCs and intrinsic membrane properties enhances precision at a cerebellar synapse. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]
D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
Dangelo E, Nieus T, Bezzi M, Arleo A, Coenen O. (2005). (chapter) Modeling synaptic transmission and quantifying information transfer in the granular layer of the cerebellum Computational Intelligence and Bioinspired Systems, Proceedings. 3512
DiGregorio DA, Nusser Z, Silver RA. (2002). Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron. 35 [PubMed]
Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]
Diwakar S, Magistretti J, Goldfarb M, Naldi G, D'Angelo E. (2009). Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. Journal of neurophysiology. 101 [PubMed]
Dover K et al. (2016). FHF-independent conduction of action potentials along the leak-resistant cerebellar granule cell axon. Nature communications. 7 [PubMed]
Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]
Geminiani A, Casellato C, Antonietti A, D'Angelo E, Pedrocchi A. (2018). A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. International journal of neural systems. 28 [PubMed]
Häusser M, Clark BA. (1997). Tonic synaptic inhibition modulates neuronal output pattern and spatiotemporal synaptic integration. Neuron. 19 [PubMed]
Maex R, De Schutter E. (1998). Synchronization of golgi and granule cell firing in a detailed network model of the cerebellar granule cell layer. Journal of neurophysiology. 80 [PubMed]
Magistretti J, Castelli L, Forti L, D'Angelo E. (2006). Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study. The Journal of physiology. 573 [PubMed]
Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]
Nieus T et al. (2006). LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. Journal of neurophysiology. 95 [PubMed]
Oláh VJ, Tarcsay G, Brunner J. (2021). Small size of recorded neuronal structures confines the accuracy in direct axonal voltage measurements. eNeuro. 8 [PubMed]
Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J. (2014). Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Frontiers in cellular neuroscience. 8 [PubMed]
Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]
Yamazaki T, Tanaka S. (2005). Neural modeling of an internal clock. Neural computation. 17 [PubMed]
Yamazaki T, Tanaka S. (2007). A spiking network model for passage-of-time representation in the cerebellum. The European journal of neuroscience. 26 [PubMed]