Afshari FS et al. (2004). Resurgent Na currents in four classes of neurons of the cerebellum. Journal of neurophysiology. 92 [PubMed]
Agrawal N, Hamam BN, Magistretti J, Alonso A, Ragsdale DS. (2001). Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons. Neuroscience. 102 [PubMed]
Alzheimer C, Schwindt PC, Crill WE. (1993). Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]
Azouz R, Jensen MS, Yaari Y. (1996). Ionic basis of spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. The Journal of physiology. 492 ( Pt 1) [PubMed]
Brickley SG, Cull-Candy SG, Farrant M. (1996). Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. The Journal of physiology. 497 ( Pt 3) [PubMed]
Brumberg JC, Nowak LG, McCormick DA. (2000). Ionic mechanisms underlying repetitive high-frequency burst firing in supragranular cortical neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Casado M, Isope P, Ascher P. (2002). Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron. 33 [PubMed]
Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]
Cummins TR, Dib-Hajj SD, Herzog RI, Waxman SG. (2005). Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS letters. 579 [PubMed]
Cummins TR, Xia Y, Haddad GG. (1994). Functional properties of rat and human neocortical voltage-sensitive sodium currents. Journal of neurophysiology. 71 [PubMed]
D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1995). Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. The Journal of physiology. 484 ( Pt 2) [PubMed]
D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1998). Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. Journal of neurophysiology. 80 [PubMed]
D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
D'Angelo E, Rossi P, Taglietti V. (1993). Different proportions of N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor currents at the mossy fibre-granule cell synapse of developing rat cerebellum. Neuroscience. 53 [PubMed]
Do MT, Bean BP. (2003). Subthreshold sodium currents and pacemaking of subthalamic neurons: modulation by slow inactivation. Neuron. 39 [PubMed]
Fleidervish IA, Gutnick MJ. (1996). Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. Journal of neurophysiology. 76 [PubMed]
Forti L, Mapelli J, Cesana E, DAngelo E. (2004). Ionic mechanisms of autorhythmic firing and intrinsic electroresponsiveness in rat cerebellar Golgi cells FENS Abstracts. 2
Franceschetti S et al. (1995). Ionic mechanisms underlying burst firing in pyramidal neurons: intracellular study in rat sensorimotor cortex. Brain research. 696 [PubMed]
Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM. (2005). Open-channel block by the cytoplasmic tail of sodium channel beta4 as a mechanism for resurgent sodium current. Neuron. 45 [PubMed]
Gähwiler BH, Llano I. (1989). Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures. The Journal of physiology. 417 [PubMed]
Hines ML, Carnevale NT. (1997). The NEURON simulation environment. Neural computation. 9 [PubMed]
Huguenard JR, Hamill OP, Prince DA. (1988). Developmental changes in Na+ conductances in rat neocortical neurons: appearance of a slowly inactivating component. Journal of neurophysiology. 59 [PubMed]
Isope P, Franconville R, Barbour B, Ascher P. (2004). Repetitive firing of rat cerebellar parallel fibres after a single stimulation. The Journal of physiology. 554 [PubMed]
Ito M, Eccles JC, Szentagothai J. (1967). The Cerebellum as a Computational Machine.
Jensen MS, Azouz R, Yaari Y. (1996). Spike after-depolarization and burst generation in adult rat hippocampal CA1 pyramidal cells. The Journal of physiology. 492 ( Pt 1) [PubMed]
Khaliq ZM, Gouwens NW, Raman IM. (2003). The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Llinás R, Sugimori M. (1980). Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. The Journal of physiology. 305 [PubMed]
Magistretti J, Alonso A. (1999). Biophysical properties and slow voltage-dependent inactivation of a sustained sodium current in entorhinal cortex layer-II principal neurons: a whole-cell and single-channel study. The Journal of general physiology. 114 [PubMed]
Magistretti J, Alonso A. (2002). Fine gating properties of channels responsible for persistent sodium current generation in entorhinal cortex neurons. The Journal of general physiology. 120 [PubMed]
Magistretti J, Castelli L, DAngello E. (2004). Three functionally different types of voltage-dependent Na+ currents in rat cerebellar granule cells in situ FENS Abstracts. 2
Magistretti J, Ragsdale DS, Alonso A. (2003). Kinetic diversity of single-channel burst openings underlying persistent Na(+) current in entorhinal cortex neurons. Biophysical journal. 85 [PubMed]
Osorio N et al. (2005). Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells. The Journal of physiology. 569 [PubMed]
Pan F, Beam KG. (1999). The absence of resurgent sodium current in mouse spinal neurons. Brain research. 849 [PubMed]
Park CC, Ahmed Z. (1991). Characterization of sodium current in developing rat diencephalic neurons in serum-free culture. Journal of neurophysiology. 65 [PubMed]
Parri HR, Crunelli V. (1998). Sodium current in rat and cat thalamocortical neurons: role of a non-inactivating component in tonic and burst firing. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]
Raman IM, Bean BP. (1997). Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Raman IM, Bean BP. (1999). Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 19 [PubMed]
Raman IM, Bean BP. (2001). Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophysical journal. 80 [PubMed]
Raman IM, Gustafson AE, Padgett D. (2000). Ionic currents and spontaneous firing in neurons isolated from the cerebellar nuclei. The Journal of neuroscience : the official journal of the Society for Neuroscience. 20 [PubMed]
Raman IM, Sprunger LK, Meisler MH, Bean BP. (1997). Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron. 19 [PubMed]
Rush AM, Dib-Hajj SD, Waxman SG. (2005). Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. The Journal of physiology. 564 [PubMed]
Sah P, Gibb AJ, Gage PW. (1988). The sodium current underlying action potentials in guinea pig hippocampal CA1 neurons. The Journal of general physiology. 91 [PubMed]
Schaller KL, Caldwell JH. (2003). Expression and distribution of voltage-gated sodium channels in the cerebellum. Cerebellum (London, England). 2 [PubMed]
Silver RA, Traynelis SF, Cull-Candy SG. (1992). Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature. 355 [PubMed]
Slater NT, Mossadeghi B. (1998). Persistent and resurgent sodium currents in cerebellar unipolar brush cells Soc Neurosci Abstr. 24
Vanier MC, Bower JM. (1999). A comparative survey of automated parameter-search methods for compartmental neural models. Journal of computational neuroscience. 7 [PubMed]
White JA, Sekar NS, Kay AR. (1995). Errors in persistent inward currents generated by space-clamp errors: a modeling study. Journal of neurophysiology. 73 [PubMed]
Yu FH et al. (2003). Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
Carrillo RR, Ros E, Tolu S, Nieus T, D'Angelo E. (2008). Event-driven simulation of cerebellar granule cells. Bio Systems. 94 [PubMed]
De Schutter E, Simoes-de-Souza FM. (2011). Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits. 1:7
Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]
Diwakar S, Magistretti J, Goldfarb M, Naldi G, D'Angelo E. (2009). Axonal Na+ channels ensure fast spike activation and back-propagation in cerebellar granule cells. Journal of neurophysiology. 101 [PubMed]
Dougalis AG, Matthews GAC, Liss B, Ungless MA. (2017). Ionic currents influencing spontaneous firing and pacemaker frequency in dopamine neurons of the ventrolateral periaqueductal gray and dorsal raphe nucleus (vlPAG/DRN): A voltage-clamp and computational modelling study. Journal of computational neuroscience. 42 [PubMed]
Jaffe DB, Brenner R. (2018). A computational model for how the fast afterhyperpolarization paradoxically increases gain in regularly firing neurons. Journal of neurophysiology. 119 [PubMed]
Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. (2007). Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]
Venugopal S et al. (2019). Resurgent Na+ Current Offers Noise Modulation in Bursting Neurons. PLoS computational biology. 15 [PubMed]
Zemel BM et al. (2021). Resurgent Na+ currents promote ultrafast spiking in projection neurons that drive fine motor control Nature communications. 12 [PubMed]