Gähwiler BH, Llano I. (1989). Sodium and potassium conductances in somatic membranes of rat Purkinje cells from organotypic cerebellar cultures. The Journal of physiology. 417 [PubMed]

See more from authors: Gähwiler BH · Llano I

References and models cited by this paper
References and models that cite this paper

Anwar H, Hong S, De Schutter E. (2012). Controlling Ca2+-activated K+ channels with models of Ca2+ buffering in Purkinje cells. Cerebellum (London, England). 11 [PubMed]

De Schutter E. (1998). Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. Journal of neurophysiology. 80 [PubMed]

De Schutter E, Bower JM. (1994). An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. Journal of neurophysiology. 71 [PubMed]

Genet S, Delord B. (2002). A biophysical model of nonlinear dynamics underlying plateau potentials and calcium spikes in purkinje cell dendrites. Journal of neurophysiology. 88 [PubMed]

Jaeger D, De Schutter E, Bower JM. (1997). The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Khaliq ZM, Gouwens NW, Raman IM. (2003). The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]

Magistretti J, Castelli L, Forti L, D'Angelo E. (2006). Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study. The Journal of physiology. 573 [PubMed]

Staub C, De Schutter E, Knöpfel T. (1994). Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar Purkinje cells. Journal of computational neuroscience. 1 [PubMed]

Williams SR, Christensen SR, Stuart GJ, Häusser M. (2002). Membrane potential bistability is controlled by the hyperpolarization-activated current I(H) in rat cerebellar Purkinje neurons in vitro. The Journal of physiology. 539 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.