Chadderton P, Margrie TW, Häusser M. (2004). Integration of quanta in cerebellar granule cells during sensory processing. Nature. 428 [PubMed]

See more from authors: Chadderton P · Margrie TW · Häusser M

References and models cited by this paper

Albus JS. (1971). A theory of cerebellar function Math Biosci. 10

Bower JM, Woolston DC. (1983). Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. Journal of neurophysiology. 49 [PubMed]

Brickley SG, Cull-Candy SG, Farrant M. (1996). Development of a tonic form of synaptic inhibition in rat cerebellar granule cells resulting from persistent activation of GABAA receptors. The Journal of physiology. 497 ( Pt 3) [PubMed]

Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M. (2001). Adaptive regulation of neuronal excitability by a voltage-independent potassium conductance. Nature. 409 [PubMed]

Brown SP, Brenowitz SD, Regehr WG. (2003). Brief presynaptic bursts evoke synapse-specific retrograde inhibition mediated by endogenous cannabinoids. Nature neuroscience. 6 [PubMed]

Casado M, Isope P, Ascher P. (2002). Involvement of presynaptic N-methyl-D-aspartate receptors in cerebellar long-term depression. Neuron. 33 [PubMed]

D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1995). Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. The Journal of physiology. 484 ( Pt 2) [PubMed]

D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1998). Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. Journal of neurophysiology. 80 [PubMed]

Eccles JC, Faber DS, Murphy JT, Sabah NH, Táboríková H. (1971). Afferent volleys in limb nerves influencing impulse discharges in cerebellar cortex. I. In mossy fibers and granule cells. Experimental brain research. 13 [PubMed]

Ekerot CF, Garwicz M, Jorntell H. (1998). Cutaneous receptive fields and topography of mossy fibres and climbing fibres projecting to cat cerebellar C3 zone. J Physiol. 512 ( Pt 1)

Gabbiani F, Midtgaard J, Knöpfel T. (1994). Synaptic integration in a model of cerebellar granule cells. Journal of neurophysiology. 72 [PubMed]

Hahnloser RH, Kozhevnikov AA, Fee MS. (2002). An ultra-sparse code underlies the generation of neural sequences in a songbird. Nature. 419 [PubMed]

Hamann M, Rossi DJ, Attwell D. (2002). Tonic and spillover inhibition of granule cells control information flow through cerebellar cortex. Neuron. 33 [PubMed]

Ito M, Eccles JC, Szentagothai J. (1967). The Cerebellum as a Neuronal Machine.

Jakab RL, Hámori J. (1988). Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anatomy and embryology. 179 [PubMed]

Konnerth A, Llano I, Armstrong CM. (1990). Synaptic currents in cerebellar Purkinje cells. Proceedings of the National Academy of Sciences of the United States of America. 87 [PubMed]

Krahe R, Gabbiani F. (2004). Burst firing in sensory systems. Nature reviews. Neuroscience. 5 [PubMed]

Lisman JE. (1997). Bursts as a unit of neural information: making unreliable synapses reliable. Trends in neurosciences. 20 [PubMed]

Llinas R. (1982). General discussion: Radial connectivity in the cerebellar cortex: A novel view regarding the functional organization of the molecular layer The Cerebellum: New Vistas. 6

Margrie TW, Brecht M, Sakmann B. (2002). In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Archiv : European journal of physiology. 444 [PubMed]

Marr D. (1969). A theory of cerebellar cortex. The Journal of physiology. 202 [PubMed]

Morissette J, Bower JM. (1996). Contribution of somatosensory cortex to responses in the rat cerebellar granule cell layer following peripheral tactile stimulation. Experimental brain research. 109 [PubMed]

Perkel DJ, Hestrin S, Sah P, Nicoll RA. (1990). Excitatory synaptic currents in Purkinje cells. Proceedings. Biological sciences. 241 [PubMed]

Shambes GM, Gibson JM, Welker W. (1978). Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. Brain, behavior and evolution. 15 [PubMed]

Silver RA, Traynelis SF, Cull-Candy SG. (1992). Rapid-time-course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature. 355 [PubMed]

Stell BM, Brickley SG, Tang CY, Farrant M, Mody I. (2003). Neuroactive steroids reduce neuronal excitability by selectively enhancing tonic inhibition mediated by delta subunit-containing GABAA receptors. Proceedings of the National Academy of Sciences of the United States of America. 100 [PubMed]

Takechi H, Eilers J, Konnerth A. (1998). A new class of synaptic response involving calcium release in dendritic spines. Nature. 396 [PubMed]

Wall MJ. (2003). Endogenous nitric oxide modulates GABAergic transmission to granule cells in adult rat cerebellum. The European journal of neuroscience. 18 [PubMed]

Wall MJ, Usowicz MM. (1997). Development of action potential-dependent and independent spontaneous GABAA receptor-mediated currents in granule cells of postnatal rat cerebellum. The European journal of neuroscience. 9 [PubMed]

Wang SS, Denk W, Häusser M. (2000). Coincidence detection in single dendritic spines mediated by calcium release. Nature neuroscience. 3 [PubMed]

References and models that cite this paper

Berends M, Maex R, De Schutter E. (2005). The effect of NMDA receptors on gain modulation. Neural computation. 17 [PubMed]

Bol K, Marsat G, Harvey-Girard E, Longtin A, Maler L. (2011). Frequency-tuned cerebellar channels and burst-induced LTD lead to the cancellation of redundant sensory inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]

Cone I, Shouval HZ. (2021). Learning precise spatiotemporal sequences via biophysically realistic learning rules in a modular, spiking network. eLife. 10 [PubMed]

Dangelo E, Nieus T, Bezzi M, Arleo A, Coenen O. (2005). (chapter) Modeling synaptic transmission and quantifying information transfer in the granular layer of the cerebellum Computational Intelligence and Bioinspired Systems, Proceedings. 3512

De Schutter E, Simoes-de-Souza FM. (2011). Robustness effect of gap junctions between Golgi cells on cerebellar cortex oscillations Neural Systems & Circuits. 1:7

Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]

Diwakar S, Parasuram H, Nair B, Medini C, Nair M. (2017). Computational Neuroscience of Timing, Plasticity and Function in Cerebellum Microcircuits (Chapter 12) Computational Neurology and Psychiatry, Springer Series in Bio-/Neuroinformatics.

Gallimore AR, Kim T, Tanaka-Yamamoto K, De Schutter E. (2018). Switching On Depression and Potentiation in the Cerebellum. Cell reports. 22 [PubMed]

Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]

Kim JK, Fiorillo CD. (2017). Theory of optimal balance predicts and explains the amplitude and decay time of synaptic inhibition. Nature communications. 8 [PubMed]

Loewenstein Y et al. (2005). Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature neuroscience. 8 [PubMed]

Magistretti J, Castelli L, Forti L, D'Angelo E. (2006). Kinetic and functional analysis of transient, persistent and resurgent sodium currents in rat cerebellar granule cells in situ: an electrophysiological and modelling study. The Journal of physiology. 573 [PubMed]

Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]

Mittmann W, Koch U, Häusser M. (2005). Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. The Journal of physiology. 563 [PubMed]

Nieus T et al. (2006). LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. Journal of neurophysiology. 95 [PubMed]

Roberts PD. (2007). Stability of complex spike timing-dependent plasticity in cerebellar learning. Journal of computational neuroscience. 22 [PubMed]

Simmonds B, Chacron MJ. (2015). Activation of parallel fiber feedback by spatially diffuse stimuli reduces signal and noise correlations via independent mechanisms in a cerebellum-like structure. PLoS computational biology. 11 [PubMed]

Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]

Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]

Vervaeke K et al. (2010). Rapid desynchronization of an electrically coupled interneuron network with sparse excitatory synaptic input. Neuron. 67 [PubMed]

Wetmore DZ, Mukamel EA, Schnitzer MJ. (2008). Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. Journal of neurophysiology. 100 [PubMed]

Yamazaki T, Nagao S. (2012). A computational mechanism for unified gain and timing control in the cerebellum. PloS one. 7 [PubMed]

Zang Y, De Schutter E. (2021). The Cellular Electrophysiological Properties Underlying Multiplexed Coding in Purkinje Cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 41 [PubMed]

Zylbertal A, Yarom Y, Wagner S. (2017). The Slow Dynamics of Intracellular Sodium Concentration Increase the Time Window of Neuronal Integration: A Simulation Study Frontiers in computational neuroscience. 11 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.