Abbott LF, Dayan P. (2001). Theoretical Neuroscience. Computational and Mathematical Modeling of Neural Systems.
Arenz A, Bracey EF, Margrie TW. (2009). Sensory representations in cerebellar granule cells. Current opinion in neurobiology. 19 [PubMed]
Arenz A, Silver RA, Schaefer AT, Margrie TW. (2008). The contribution of single synapses to sensory representation in vivo. Science (New York, N.Y.). 321 [PubMed]
Arleo A et al. (2010). How synaptic release probability shapes neuronal transmission: information-theoretic analysis in a cerebellar granule cell. Neural computation. 22 [PubMed]
Barmack NH, Yakhnitsa V. (2008). Functions of interneurons in mouse cerebellum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Bayly EJ. (1968). Spectral analysis of pulse frequency modulation in the nervous systems. IEEE transactions on bio-medical engineering. 15 [PubMed]
Benda J, Herz AV. (2003). A universal model for spike-frequency adaptation. Neural computation. 15 [PubMed]
Bendat JS, Andpiersol AG. (2010). Random Data:Analysis and Measurement Procedures.
Beraneck M, Cullen KE. (2007). Activity of vestibular nuclei neurons during vestibular and optokinetic stimulation in the alert mouse. Journal of neurophysiology. 98 [PubMed]
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D. (1991). Reading a neural code. Science (New York, N.Y.). 252 [PubMed]
Boyden ES, Katoh A, Raymond JL. (2004). Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annual review of neuroscience. 27 [PubMed]
Brunel N, Chance FS, Fourcaud N, Abbott LF. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical review letters. 86 [PubMed]
Chacron MJ, Schneider A, Cullen KE, Carriott J, Jamali M. (2013). Natural statistic of vestibular stimuli Society for Neuroscience 367.14.
Chadderton P, Schaefer AT, Williams SR, Margrie TW. (2014). Sensory-evoked synaptic integration in cerebellar and cerebral cortical neurons. Nature reviews. Neuroscience. 15 [PubMed]
Cheron G, Escudero M, Godaux E. (1996). Discharge properties of brain stem neurons projecting to the flocculus in the alert cat. I. Medical vestibular nucleus. Journal of neurophysiology. 76 [PubMed]
D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1995). Synaptic excitation of individual rat cerebellar granule cells in situ: evidence for the role of NMDA receptors. The Journal of physiology. 484 ( Pt 2) [PubMed]
D'Angelo E, De Zeeuw CI. (2009). Timing and plasticity in the cerebellum: focus on the granular layer. Trends in neurosciences. 32 [PubMed]
D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
Dean P, Anderson S, Porrill J, Jörntell H. (2013). An adaptive filter model of cerebellar zone C3 as a basis for safe limb control? The Journal of physiology. 591 [PubMed]
Dean P, Porrill J, Ekerot CF, Jörntell H. (2010). The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nature reviews. Neuroscience. 11 [PubMed]
Demer JL, Viirre ES. (2007). Visual-vestibular interaction during standing, walking, and running. J Vestib Res. 6
Destexhe A, Rudolph M, Fellous JM, Sejnowski TJ. (2001). Fluctuating synaptic conductances recreate in vivo-like activity in neocortical neurons. Neuroscience. 107 [PubMed]
DiGregorio DA, Nusser Z, Silver RA. (2002). Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron. 35 [PubMed]
Fujita M. (1982). Adaptive filter model of the cerebellum. Biological cybernetics. 45 [PubMed]
Galliano E, Mazzarello P, D'Angelo E. (2010). Discovery and rediscoveries of Golgi cells. The Journal of physiology. 588 [PubMed]
Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. (2013). ?-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in neural circuits. 7 [PubMed]
Gao Z, van Beugen BJ, De Zeeuw CI. (2012). Distributed synergistic plasticity and cerebellar learning. Nature reviews. Neuroscience. 13 [PubMed]
Geborek P, Spanne A, Bengtsson F, Jörntell H. (2013). Cerebellar cortical neuron responses evoked from the spinal border cell tract. Frontiers in neural circuits. 7 [PubMed]
Gerstner W. (2000). Population dynamics of spiking neurons: fast transients, asynchronous states, and locking. Neural computation. 12 [PubMed]
Grossman GE, Leigh RJ, Abel LA, Lanska DJ, Thurston SE. (1988). Frequency and velocity of rotational head perturbations during locomotion. Experimental brain research. 70 [PubMed]
Herculano-Houzel S. (2010). Coordinated scaling of cortical and cerebellar numbers of neurons. Frontiers in neuroanatomy. 4 [PubMed]
Holtzman T et al. (2011). Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell-granule cell loops. The Journal of physiology. 589 [PubMed]
Hunter P, Nielsen P. (2005). A strategy for integrative computational physiology. Physiology (Bethesda, Md.). 20 [PubMed]
Huterer M, Cullen KE. (2002). Vestibuloocular reflex dynamics during high-frequency and high-acceleration rotations of the head on body in rhesus monkey. Journal of neurophysiology. 88 [PubMed]
Jörntell H, Ekerot CF. (2006). Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Kennedy A et al. (2014). A temporal basis for predicting the sensory consequences of motor commands in an electric fish. Nature neuroscience. 17 [PubMed]
Knight BW. (1972). Dynamics of encoding in a population of neurons. The Journal of general physiology. 59 [PubMed]
Koch C, Adams PR, Yamada WM. (1998). Multiple channels and calcium dynamics. Methods In Neuronal Modeling: From Synapses To Networks.
Koch C, Gabbiani F. (1998). Principles of spike train analysis Methods In Neuronal Modeling: From Ions To Networks.
Lisberger SG, Fuchs AF. (1978). Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. II. Mossy fiber firing patterns during horizontal head rotation and eye movement. Journal of neurophysiology. 41 [PubMed]
Locatelli F, Bottà L, Prestori F, Masetto S, D'Angelo E. (2013). Late-onset bursts evoked by mossy fibre bundle stimulation in unipolar brush cells: evidence for the involvement of H- and TRP-currents. The Journal of physiology. 591 [PubMed]
Mapelli L, Rossi P, Nieus T, D'Angelo E. (2009). Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. Journal of neurophysiology. 101 [PubMed]
Massot C, Chacron MJ, Cullen KE. (2011). Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding. Journal of neurophysiology. 105 [PubMed]
Medrea I, Cullen KE. (2013). Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion. Journal of neurophysiology. 110 [PubMed]
Miles FA, Fuller JH, Braitman DJ, Dow BM. (1980). Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. Journal of neurophysiology. 43 [PubMed]
Mugnaini E, Sekerková G, Martina M. (2011). The unipolar brush cell: a remarkable neuron finally receiving deserved attention. Brain research reviews. 66 [PubMed]
Nieus T et al. (2006). LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: experimental observations and theoretical predictions. Journal of neurophysiology. 95 [PubMed]
Noble D. (2002). Modeling the heart--from genes to cells to the whole organ. Science (New York, N.Y.). 295 [PubMed]
Porrill J, Dean P. (2007). Cerebellar motor learning: when is cortical plasticity not enough? PLoS computational biology. 3 [PubMed]
Pozzo T, Berthoz A, Lefort L. (1990). Head stabilization during various locomotor tasks in humans. I. Normal subjects. Experimental brain research. 82 [PubMed]
Ramachandran R, Lisberger SG. (2005). Normal performance and expression of learning in the vestibulo-ocular reflex (VOR) at high frequencies. Journal of neurophysiology. 93 [PubMed]
Rancz EA et al. (2007). High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature. 450 [PubMed]
Richardson MJ, Brunel N, Hakim V. (2003). From subthreshold to firing-rate resonance. Journal of neurophysiology. 89 [PubMed]
Robinson DA. (1981). The use of control systems analysis in the neurophysiology of eye movements. Annual review of neuroscience. 4 [PubMed]
Ruigrok TJ, Simpson JI, Hensbroek RA, Vanbeugen BJ. (2006). Spike modulation of unipolar brush cells and granule cells in the cerebellum of the awake rabbit SocietyforNeuroscience Prog. No. 740.2.
Ruigrok TJ et al. (2009). Signal processing by cerebellar granule cells SocietyforNeuroscience Prog. No. 367.9.
Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE. (2007). Neural variability, detection thresholds, and information transmission in the vestibular system. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Sejnowski TJ, Koch C, Churchland PS. (1988). Computational neuroscience. Science (New York, N.Y.). 241 [PubMed]
Simpson JI, Belton T, Hensbroek RA. (2012). Kinematic variables represented by floccular mossy fiber and Purkinje cell responses vestibular stimulation SocietyforNeuroscience Prog. No. 589.15..
Simpson JI, Hensbroek RA, Ruigrok TJH, Vanbeugen BJ. (2005). Burst modulation ofcerebellar granule cells during vestibular stimulation Societyfor Neuroscience Prog. No. 297.4.
Simpson JI, Hulscher HC, Hensbroek RA, Ruigrok TJH, Vanbeugen BJ. (2005). Diversity in vestibular signals of unipolar brush cells .
Simpson JI, Hulscher HC, Sabel-Goedknegt E, Ruigrok TJ. (2005). Between in and out: linking morphology and physiology of cerebellar cortical interneurons. Progress in brain research. 148 [PubMed]
Solinas S, Nieus T, D'Angelo E. (2010). A realistic large-scale model of the cerebellum granular layer predicts circuit spatio-temporal filtering properties. Frontiers in cellular neuroscience. 4 [PubMed]
Spanne A, Jörntell H. (2013). Processing of multi-dimensional sensorimotor information in the spinal and cerebellar neuronal circuitry: a new hypothesis. PLoS computational biology. 9 [PubMed]
Subramaniyam S et al. (2014). Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells. Frontiers in cellular neuroscience. 8 [PubMed]
Tabak S, Collewijn H, Boumans LJ, van der Steen J. (1997). Gain and delay of human vestibulo-ocular reflexes to oscillation and steps of the head by a reactive torque helmet. I. Normal subjects. Acta oto-laryngologica. 117 [PubMed]
Voogd J, Barmack NH. (2006). Oculomotor cerebellum. Progress in brain research. 151 [PubMed]
Wisden W, Brickley S, Houston CM. (2012). Axon location determines the input selectivity of cerebellar granule cells Society for Neuroscience Prog. No. 648.17.
Zhang Y, Partsalis AM, Highstein SM. (1993). Properties of superior vestibular nucleus neurons projecting to the cerebellar flocculus in the squirrel monkey. Journal of neurophysiology. 69 [PubMed]
van Beugen BJ, Gao Z, Boele HJ, Hoebeek F, De Zeeuw CI. (2013). High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding. Frontiers in neural circuits. 7 [PubMed]
van Dorp S, De Zeeuw CI. (2014). Variable timing of synaptic transmission in cerebellar unipolar brush cells. Proceedings of the National Academy of Sciences of the United States of America. 111 [PubMed]
Rössert C, Dean P, Porrill J. (2015). At the Edge of Chaos: How Cerebellar Granular Layer Network Dynamics Can Provide the Basis for Temporal Filters. PLoS computational biology. 11 [PubMed]
Sudhakar SK et al. (2017). Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS computational biology. 13 [PubMed]
Wilson CJ, Beverlin B, Netoff T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in systems neuroscience. 5 [PubMed]