Schweighofer N, Doya K, Lay F. (2001). Unsupervised learning of granule cell sparse codes enhances cerebellar adaptive control. Neuroscience. 103 [PubMed]

See more from authors: Schweighofer N · Doya K · Lay F

References and models cited by this paper
References and models that cite this paper

Cayco-Gajic NA, Clopath C, Silver RA. (2017). Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks. Nature communications. 8 [PubMed]

Diwakar S, Lombardo P, Solinas S, Naldi G, D'Angelo E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under LTP and LTD control. PloS one. 6 [PubMed]

Garrido JA, Luque NR, D'Angelo E, Ros E. (2013). Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation Frontiers in neural circuits. 7 [PubMed]

Garrido JA, Ros E, D'Angelo E. (2013). Spike timing regulation on the millisecond scale by distributed synaptic plasticity at the cerebellum input stage: a simulation study. Frontiers in computational neuroscience. 7 [PubMed]

Roberts PD. (2007). Stability of complex spike timing-dependent plasticity in cerebellar learning. Journal of computational neuroscience. 22 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.