Aizenman CD, Linden DJ. (1999). Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. Journal of neurophysiology. 82 [PubMed]
Alviña K, Walter JT, Kohn A, Ellis-Davies G, Khodakhah K. (2008). Questioning the role of rebound firing in the cerebellum. Nature neuroscience. 11 [PubMed]
Buchin A, Rieubland S, Häusser M, Gutkin BS, Roth A. (2016). Inverse Stochastic Resonance in Cerebellar Purkinje Cells. PLoS computational biology. 12 [PubMed]
Casali S, Marenzi E, Medini C, Casellato C, D'Angelo E. (2019). Reconstruction and Simulation of a Scaffold Model of the Cerebellar Network. Frontiers in neuroinformatics. 13 [PubMed]
Cavallari S, Panzeri S, Mazzoni A. (2014). Comparison of the dynamics of neural interactions between current-based and conductance-based integrate-and-fire recurrent networks. Frontiers in neural circuits. 8 [PubMed]
Choi S et al. (2010). Subthreshold membrane potential oscillations in inferior olive neurons are dynamically regulated by P/Q- and T-type calcium channels: a study in mutant mice. The Journal of physiology. 588 [PubMed]
Courtemanche R, Robinson JC, Aponte DI. (2013). Linking oscillations in cerebellar circuits. Frontiers in neural circuits. 7 [PubMed]
D'Angelo E et al. (2016). Modeling the Cerebellar Microcircuit: New Strategies for a Long-Standing Issue. Frontiers in cellular neuroscience. 10 [PubMed]
D'Angelo E, Casali S. (2012). Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Frontiers in neural circuits. 6 [PubMed]
D'Angelo E, De Filippi G, Rossi P, Taglietti V. (1998). Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. Journal of neurophysiology. 80 [PubMed]
D'Angelo E et al. (2016). Distributed Circuit Plasticity: New Clues for the Cerebellar Mechanisms of Learning. Cerebellum (London, England). 15 [PubMed]
D'Angelo E et al. (2001). Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]
D'Angelo E et al. (2013). The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Frontiers in neural circuits. 7 [PubMed]
De Gruijl JR, Bazzigaluppi P, de Jeu MT, De Zeeuw CI. (2012). Climbing fiber burst size and olivary sub-threshold oscillations in a network setting. PLoS computational biology. 8 [PubMed]
De Schutter E, Steuber V. (2009). Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory. Neuroscience. 162 [PubMed]
De Zeeuw CI et al. (2003). Deformation of network connectivity in the inferior olive of connexin 36-deficient mice is compensated by morphological and electrophysiological changes at the single neuron level. The Journal of neuroscience : the official journal of the Society for Neuroscience. 23 [PubMed]
De Zeeuw CI et al. (2011). Spatiotemporal firing patterns in the cerebellum. Nature reviews. Neuroscience. 12 [PubMed]
Forti L, Cesana E, Mapelli J, D'Angelo E. (2006). Ionic mechanisms of autorhythmic firing in rat cerebellar Golgi cells. The Journal of physiology. 574 [PubMed]
Galliano E et al. (2013). Silencing the majority of cerebellar granule cells uncovers their essential role in motor learning and consolidation. Cell reports. 3 [PubMed]
Gandolfi D, Lombardo P, Mapelli J, Solinas S, D'Angelo E. (2013). ?-Frequency resonance at the cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in neural circuits. 7 [PubMed]
Geminiani A et al. (2018). Complex Dynamics in Simplified Neuronal Models: Reproducing Golgi Cell Electroresponsiveness. Frontiers in neuroinformatics. 12 [PubMed]
Grasselli G et al. (2016). Activity-Dependent Plasticity of Spike Pauses in Cerebellar Purkinje Cells. Cell reports. 14 [PubMed]
Hoebeek FE, Witter L, Ruigrok TJ, De Zeeuw CI. (2010). Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei. Proceedings of the National Academy of Sciences of the United States of America. 107 [PubMed]
Houston CM et al. (2017). Exploring the significance of morphological diversity for cerebellar granule cell excitability. Scientific reports. 7 [PubMed]
Hoxha E, Boda E, Montarolo F, Parolisi R, Tempia F. (2012). Excitability and synaptic alterations in the cerebellum of APP/PS1 mice. PloS one. 7 [PubMed]
Ito M, Yamaguchi K, Nagao S, Yamazaki T. (2014). Long-term depression as a model of cerebellar plasticity. Progress in brain research. 210 [PubMed]
Izhikevich EM. (2003). Simple model of spiking neurons. IEEE transactions on neural networks. 14 [PubMed]
Jolivet R, Rauch A, Lüscher HR, Gerstner W. (2006). Predicting spike timing of neocortical pyramidal neurons by simple threshold models. Journal of computational neuroscience. 21 [PubMed]
Lennon W, Hecht-Nielsen R, Yamazaki T. (2014). A spiking network model of cerebellar Purkinje cells and molecular layer interneurons exhibiting irregular firing. Frontiers in computational neuroscience. 8 [PubMed]
Llinás RR. (1988). The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science (New York, N.Y.). 242 [PubMed]
Loewenstein Y et al. (2005). Bistability of cerebellar Purkinje cells modulated by sensory stimulation. Nature neuroscience. 8 [PubMed]
Long MA, Deans MR, Paul DL, Connors BW. (2002). Rhythmicity without synchrony in the electrically uncoupled inferior olive. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Marasco A, Limongiello A, Migliore M. (2012). Fast and accurate low-dimensional reduction of biophysically detailed neuron models. Scientific reports. 2 [PubMed]
Maruta J, Hensbroek RA, Simpson JI. (2007). Intraburst and interburst signaling by climbing fibers. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
Masoli S, D'Angelo E. (2017). Synaptic Activation of a Detailed Purkinje Cell Model Predicts Voltage-Dependent Control of Burst-Pause Responses in Active Dendrites. Frontiers in cellular neuroscience. 11 [PubMed]
Masoli S et al. (2017). Single Neuron Optimization as a Basis for Accurate Biophysical Modeling: The Case of Cerebellar Granule Cells. Frontiers in cellular neuroscience. 11 [PubMed]
Masoli S, Solinas S, D'Angelo E. (2015). Action potential processing in a detailed Purkinje cell model reveals a critical role for axonal compartmentalization. Frontiers in cellular neuroscience. 9 [PubMed]
Mathy A et al. (2009). Encoding of oscillations by axonal bursts in inferior olive neurons. Neuron. 62 [PubMed]
McKay BE, Turner RW. (2005). Physiological and morphological development of the rat cerebellar Purkinje cell. The Journal of physiology. 567 [PubMed]
Mihalaş S, Niebur E. (2009). A generalized linear integrate-and-fire neural model produces diverse spiking behaviors. Neural computation. 21 [PubMed]
Molineux ML et al. (2006). Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proceedings of the National Academy of Sciences of the United States of America. 103 [PubMed]
Rokni D, Tal Z, Byk H, Yarom Y. (2009). Regularity, variability and bi-stability in the activity of cerebellar purkinje cells. Frontiers in cellular neuroscience. 3 [PubMed]
Solinas S et al. (2007). Computational reconstruction of pacemaking and intrinsic electroresponsiveness in cerebellar Golgi cells. Frontiers in cellular neuroscience. 1 [PubMed]
Solinas S et al. (2007). Fast-reset of pacemaking and theta-frequency resonance patterns in cerebellar golgi cells: simulations of their impact in vivo. Frontiers in cellular neuroscience. 1 [PubMed]
Spanne A, Geborek P, Bengtsson F, Jörntell H. (2014). Simulating spinal border cells and cerebellar granule cells under locomotion--a case study of spinocerebellar information processing. PloS one. 9 [PubMed]
Steuber V, Schultheiss NW, Silver RA, De Schutter E, Jaeger D. (2011). Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells. Journal of computational neuroscience. 30 [PubMed]
Tripathy SJ, Savitskaya J, Burton SD, Urban NN, Gerkin RC. (2014). NeuroElectro: a window to the world's neuron electrophysiology data. Frontiers in neuroinformatics. 8 [PubMed]
Uusisaari M, Knöpfel T. (2011). Functional classification of neurons in the mouse lateral cerebellar nuclei. Cerebellum (London, England). 10 [PubMed]
Uusisaari M, Obata K, Knöpfel T. (2007). Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Journal of neurophysiology. 97 [PubMed]
Van Der Giessen RS et al. (2008). Role of olivary electrical coupling in cerebellar motor learning. Neuron. 58 [PubMed]
Zhou H et al. (2014). Cerebellar modules operate at different frequencies. eLife. 3 [PubMed]
Geminiani A, Pedrocchi A, D'Angelo E, Casellato C. (2019). Response Dynamics in an Olivocerebellar Spiking Neural Network With Non-linear Neuron Properties. Frontiers in computational neuroscience. 13 [PubMed]
Marasco A et al. (2023). An Adaptive Generalized Leaky Integrate-and-Fire Model for Hippocampal CA1 Pyramidal Neurons and Interneurons. Bulletin of mathematical biology. 85 [PubMed]