We built a comprehensive computational model of subthalamic nucleus (STN) deep brain stimulation (DBS) in parkinsonian macaques to study the effects of stimulation in a controlled environment. The model consisted of three fundamental components: 1) a three-dimensional (3D) anatomical model of the macaque basal ganglia, 2) a finite element model of the DBS electrode and electric field transmitted to the tissue medium, and 3) multicompartment biophysical models of STN projection neurons, GPi fibers of passage, and internal capsule fibers of passage. Populations of neurons were positioned within the 3D anatomical model. Neurons were stimulated with electrode positions and stimulation parameters defined as clinically effective in two parkinsonian monkeys. The model predicted axonal activation of STN neurons and GPi fibers during STN DBS. Model predictions regarding the degree of GPi fiber activation matched well with experimental recordings in both monkeys.
Model Type: Neuron or other electrically excitable cell
Cell Type(s): Subthalamus nucleus projection neuron
Currents: I K; I K,leak; I K,Ca; I Sodium; I Calcium; I Na, leak
Receptors: GabaA
Transmitters: Gaba
Model Concept(s): Action Potential Initiation; Action Potentials; Parkinson's; Deep brain stimulation
Simulation Environment: NEURON
Implementer(s): McIntyre, Cameron C. [ccm4 at case.edu]; Hahn, Philip [hahnp at ccf.org]; Miocinovic, Svjetlana [svjetlana.miocinovic at utsouthwestern.edu]; Butson, Chris [cbutson at mcw.edu]
References:
Miocinovic S et al. (2006). Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Journal of neurophysiology. 96 [PubMed]