Phase locking in leaky integrate-and-fire model (Brette 2004)


Brette R. (2004). Dynamics of one-dimensional spiking neuron models. Journal of mathematical biology. 48 [PubMed]

See more from authors: Brette R

References and models cited by this paper

Alstrom P, Christiansen B, Levinsen MT. (1988). Nonchaotic transition from quasiperiodicity to complete phase locking. Physical review letters. 61 [PubMed]

Artun OB, Shouval HZ, Cooper LN. (1998). The effect of dynamic synapses on spatiotemporal receptive fields in visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]

Ascoli C, Barbi M, Chillemi S, Petracchi D. (1977). Phase-locked responses in the Limulus lateral eye. Theoretical and experimental investigation. Biophysical journal. 19 [PubMed]

Bak P, Bohr T, Jensen M. (1983). Complete devil's staircase, fractal dimension and universality of mode-locking structure in the circle map Phys Rev Lett. 50

Brette R. (2003). Rotation numbers of discontinuous orientation-preserving circle maps Set-Valued Analysis. 11(4)

Brette R, Guigon E. (2003). Reliability of spike timing is a general property of spiking model neurons. Neural computation. 15 [PubMed]

Coombes S. (1999). Liapunov exponents and mode-locked solutions for integrate-and-fire dynamical systems Phys. Lett. A. 255(1-2)

De_melo W, Van_strien S. (1993). One-dimensional dynamics.

Denjoy A. (1932). Sur les courbes definies par les equations differentielles a la surface du tore J Math Pures Appl. 9

Ermentrout B. (1996). Type I membranes, phase resetting curves, and synchrony. Neural computation. 8 [PubMed]

Fomin S, Cornfeld I, Sinai Y. (1981). Ergodic theory Grundlehren der mathematischen Wissenschaften. 245

Glass L, Belair J. (1986). Continuation of Arnold tongues in mathematical models of periodically forced biological oscillators Lecture Notes in Biomathematics. 66

Glass L, Perez R. (1982). Fine structure of phase locking Phys Rev Lett. 48

Guttman R, Feldman L, Jakobsson E. (1980). Frequency entrainment of squid axon membrane. The Journal of membrane biology. 56 [PubMed]

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Herman M. (1977). Mesure de Lebesgue et nombre de rotation Lecture Notes in Math. 597

Keener JP. (1980). Chaotic behavior in piecewise continuous difference equations Trans Of The AMS. 261

Knight BW. (1972). Dynamics of encoding in a population of neurons. The Journal of general physiology. 59 [PubMed]

Kopell N, Ermentrout GB. (1986). Parabolic bursting in an excitable system coupled with a slow oscillation. Siam J Appl Math. 46

Kwapisz J. (2000). Poincare rotation number for maps of the real line with almost periodic displacement Nonlinearity. 13

Köppl C. (1997). Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]

Lapicque L. (1907). Recherches quantitatives sur lexcitation electrique des nerfs traitee comme une polarisation J Physiol Pathol Gen. 9

Latham PE, Richmond BJ, Nelson PG, Nirenberg S. (2000). Intrinsic dynamics in neuronal networks. I. Theory. Journal of neurophysiology. 83 [PubMed]

Poincare H. (1885). Sur les courbes definies par les equations differentielles J Math Pures App I. 167

Rescigno A, Stein RB, Purple RL, Poppele RE. (1970). A neuronal model for the discharge patterns produced by cyclic inputs. The Bulletin of mathematical biophysics. 32 [PubMed]

Rinzel J, Keener J, Hoppensteadt F. (1981). Integrate-and-fire models of nerve membrane response to oscillatory input. Siam J Appl Math. 41

Schnitzler A et al. (1998). Detection of n:m phase locking from noisy data: Application to magnetoencephalography Phys Rev Lett. 81

Somers DC, Nelson SB, Sur M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Song S, Abbott LF. (2001). Cortical development and remapping through spike timing-dependent plasticity. Neuron. 32 [PubMed]

Song S, Miller KD, Abbott LF. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature neuroscience. 3 [PubMed]

Swiatek G. (1988). Rational rotation numbers for maps of the circle Commun Math Phys. 119

Thompson C, Rhodes F. (1986). Rotation numbers for monotone functions on the circle J London Math Soc. 2

Thompson C, Rhodes F. (1991). Topologies and rotation numbers for families of monotone functions on the circle J London Math Soc. 2

Tiesinga PHE. (2002). Phys Rev E. 65

Troyer TW, Miller KD. (1997). Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural computation. 9 [PubMed]

Veerman JJP. (1989). Irrational rotation numbers Nonlinearity. 2

References and models that cite this paper

Brette R. (2012). Computing with neural synchrony. PLoS computational biology. 8 [PubMed]

Touboul J, Brette R. (2008). Dynamics and bifurcations of the adaptive exponential integrate-and-fire model. Biological cybernetics. 99 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.