Somers DC, Nelson SB, Sur M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

See more from authors: Somers DC · Nelson SB · Sur M

References and models cited by this paper
References and models that cite this paper

Banitt Y, Martin KA, Segev I. (2007). A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]

Bernander O, Douglas RJ, Martin KA, Koch C. (1991). Synaptic background activity influences spatiotemporal integration in single pyramidal cells. Proceedings of the National Academy of Sciences of the United States of America. 88 [PubMed]

Bhaumik B, Mathur M. (2003). A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity. Journal of computational neuroscience. 14 [PubMed]

Blumenfeld B, Bibitchkov D, Tsodyks M. (2006). Neural network model of the primary visual cortex: From functional architecture to lateral connectivity and back Journal of computational neuroscience. 20 [PubMed]

Brette R. (2004). Dynamics of one-dimensional spiking neuron models. Journal of mathematical biology. 48 [PubMed]

Brunel N, Wang XJ. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of computational neuroscience. 11 [PubMed]

Bush P, Priebe N. (1998). GABAergic inhibitory control of the transient and sustained components of orientation selectivity in a model microcolumn in layer 4 of cat visual cortex. Neural computation. 10 [PubMed]

Eguchi A, Neymotin SA, Stringer SM. (2014). Color opponent receptive fields self-organize in a biophysical model of visual cortex via spike-timing dependent plasticity Frontiers in neural circuits. 8 [PubMed]

Fransén E, Lansner A. (1998). A model of cortical associative memory based on a horizontal network of connected columns. Network (Bristol, England). 9 [PubMed]

Hansel D, van Vreeswijk C. (2002). How noise contributes to contrast invariance of orientation tuning in cat visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Kovacic G, Tao L, Cai D, Shelley MJ. (2008). Theoretical analysis of reverse-time correlation for idealized orientation tuning dynamics. Journal of computational neuroscience. 25 [PubMed]

Liu YH, Wang XJ. (2001). Spike-frequency adaptation of a generalized leaky integrate-and-fire model neuron. Journal of computational neuroscience. 10 [PubMed]

Ly C, Tranchina D. (2007). Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling. Neural computation. 19 [PubMed]

Lücke J, von der Malsburg C. (2004). Rapid processing and unsupervised learning in a model of the cortical macrocolumn. Neural computation. 16 [PubMed]

Martínez-Cañada P et al. (2018). Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells. PLoS computational biology. 14 [PubMed]

Mel BW, Ruderman DL, Archie KA. (1998). Translation-invariant orientation tuning in visual "complex" cells could derive from intradendritic computations. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Miyawaki Y, Okada M. (2004). A network model of perceptual suppression induced by transcranial magnetic stimulation. Neural computation. 16 [PubMed]

Morita K, Okada M, Aihara K. (2007). Selectivity and stability via dendritic nonlinearity. Neural computation. 19 [PubMed]

Nykamp DQ, Tranchina D. (2000). A population density approach that facilitates large-scale modeling of neural networks: analysis and an application to orientation tuning. Journal of computational neuroscience. 8 [PubMed]

Omurtag A, Knight BW, Sirovich L. (2000). On the simulation of large populations of neurons. Journal of computational neuroscience. 8 [PubMed]

Palmer SE, Miller KD. (2007). Effects of inhibitory gain and conductance fluctuations in a simple model for contrast-invariant orientation tuning in cat V1. Journal of neurophysiology. 98 [PubMed]

Pugh MC, Ringach DL, Shapley R, Shelley MJ. (2000). Computational modeling of orientation tuning dynamics in monkey primary visual cortex. Journal of computational neuroscience. 8 [PubMed]

Rangan AV, Cai D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of computational neuroscience. 22 [PubMed]

Rubin J, Terman D, Chow C. (2001). Localized bumps of activity sustained by inhibition in a two-layer thalamic network. Journal of computational neuroscience. 10 [PubMed]

Sadeh S, Clopath C, Rotter S. (2015). Processing of Feature Selectivity in Cortical Networks with Specific Connectivity. PloS one. 10 [PubMed]

Sadeh S, Rotter S. (2015). Orientation selectivity in inhibition-dominated networks of spiking neurons: effect of single neuron properties and network dynamics. PLoS computational biology. 11 [PubMed]

Shelley M, McLaughlin D. (2002). Coarse-grained reduction and analysis of a network model of cortical response: I. Drifting grating stimuli. Journal of computational neuroscience. 12 [PubMed]

Shelley MJ, Tao L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of computational neuroscience. 11 [PubMed]

Shen YS, Gao H, Yao H. (2005). Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. Journal of computational neuroscience. 18 [PubMed]

Stoop R et al. (2002). Collective bursting in layer IV. Synchronization by small thalamic inputs and recurrent connections. Brain research. Cognitive brain research. 13 [PubMed]

Tucker TR, Katz LC. (2003). Recruitment of local inhibitory networks by horizontal connections in layer 2/3 of ferret visual cortex. Journal of neurophysiology. 89 [PubMed]

Ursino M, La Cara GE. (2005). Dependence of visual cell properties on intracortical synapses among hypercolumns: analysis by a computer model. Journal of computational neuroscience. 19 [PubMed]

Wennekers T. (2004). Separation of spatio-temporal receptive fields into sums of gaussian components. Journal of computational neuroscience. 16 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.