Martínez-Cañada P et al. (2018). Biophysical network modeling of the dLGN circuit: Effects of cortical feedback on spatial response properties of relay cells. PLoS computational biology. 14 [PubMed]

See more from authors: Martínez-Cañada P · Mobarhan MH · Halnes G · Fyhn M · Morillas C · Pelayo F · Einevoll GT

References and models cited by this paper

Alitto HJ, Usrey WM. (2003). Corticothalamic feedback and sensory processing. Current opinion in neurobiology. 13 [PubMed]

Alitto HJ, Usrey WM. (2015). Dissecting the dynamics of corticothalamic feedback. Neuron. 86 [PubMed]

Alitto HJ, Usrey WM. (2015). Surround suppression and temporal processing of visual signals. Journal of neurophysiology. 113 [PubMed]

Alitto HJ, Weyand TG, Usrey WM. (2005). Distinct properties of stimulus-evoked bursts in the lateral geniculate nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Allken V, Chepkoech JL, Einevoll GT, Halnes G. (2014). The subcellular distribution of T-type Ca2+ channels in interneurons of the lateral geniculate nucleus. PloS one. 9 [PubMed]

Alonso JM, Usrey WM, Reid RC. (2001). Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 21 [PubMed]

Andolina IM, Jones HE, Sillito AM. (2013). Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. Journal of neurophysiology. 109 [PubMed]

Andolina IM, Jones HE, Wang W, Sillito AM. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. Proceedings of the National Academy of Sciences of the United States of America. 104 [PubMed]

Augustinaite S, Yanagawa Y, Heggelund P. (2011). Cortical feedback regulation of input to visual cortex: role of intrageniculate interneurons. The Journal of physiology. 589 [PubMed]

BARLOW HB. (1961). Possible principles underlying the transformations of sensory messages Sensory Communication.

Binzegger T, Douglas RJ, Martin KA. (2004). A quantitative map of the circuit of cat primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Blitz DM, Regehr WG. (2005). Timing and specificity of feed-forward inhibition within the LGN. Neuron. 45 [PubMed]

Bloomfield SA, Sherman SM. (1989). Dendritic current flow in relay cells and interneurons of the cat's lateral geniculate nucleus. Proceedings of the National Academy of Sciences of the United States of America. 86 [PubMed]

Boudreau CE, Ferster D. (2005). Short-term depression in thalamocortical synapses of cat primary visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 25 [PubMed]

Briggs F, Usrey WM. (2011). Corticogeniculate feedback and visual processing in the primate. The Journal of physiology. 589 [PubMed]

Cudeiro J, Sillito AM. (1996). Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. The Journal of physiology. 490 ( Pt 2) [PubMed]

Cudeiro J, Sillito AM. (2006). Looking back: corticothalamic feedback and early visual processing. Trends in neurosciences. 29 [PubMed]

Dalcin LD, Paz RR, Kler PA, Cosimo A. (2011). Parallel distributed computing using python Advances in Water Resources. 34(9)

DeAngelis GC, Ohzawa I, Freeman RD. (1993). Spatiotemporal organization of simple-cell receptive fields in the cat's striate cortex. I. General characteristics and postnatal development. Journal of neurophysiology. 69 [PubMed]

DeAngelis GC, Ohzawa I, Freeman RD. (1995). Receptive-field dynamics in the central visual pathways. Trends in neurosciences. 18 [PubMed]

Destexhe A, Bal T, McCormick DA, Sejnowski TJ. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of neurophysiology. 76 [PubMed]

Destexhe A, Contreras D, Steriade M. (1998). Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of neurophysiology. 79 [PubMed]

Diesmann M, Gewaltig M-O. (2007). NEST (Neural Simulation Tool) Scholarpedia. 2

Dubin MW, Cleland BG. (1977). Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. Journal of neurophysiology. 40 [PubMed]

Einevoll GT, Heggelund P. (2000). Mathematical models for the spatial receptive-field organization of nonlagged X-cells in dorsal lateral geniculate nucleus of cat. Visual neuroscience. 17 [PubMed]

Einevoll GT, Jurkus P, Heggelund P. (2011). Coarse-to-fine changes of receptive fields in lateral geniculate nucleus have a transient and a sustained component that depend on distinct mechanisms. PloS one. 6 [PubMed]

Einevoll GT, Plesser HE. (2002). Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting-grating stimuli. Network (Bristol, England). 13 [PubMed]

Einevoll GT, Plesser HE. (2005). Response of the difference-of-Gaussians model to circular drifting-grating patches. Visual neuroscience. 22 [PubMed]

Einevoll GT, Plesser HE. (2012). Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cognitive neurodynamics. 6 [PubMed]

Enroth-Cugell C, Robson JG. (1966). The contrast sensitivity of retinal ganglion cells of the cat. The Journal of physiology. 187 [PubMed]

Et AL, Eppler JM. (2015). NEST 2.8.0. Zenodo, Available from: http://dx.doi.org/10.5281/zenodo.32969.

Ferster D, Miller KD. (2000). Neural mechanisms of orientation selectivity in the visual cortex. Annual review of neuroscience. 23 [PubMed]

Geisert EE, Langsetmo A, Spear PD. (1981). Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons. Brain research. 208 [PubMed]

Gilbert CD. (1977). Laminar differences in receptive field properties of cells in cat primary visual cortex. The Journal of physiology. 268 [PubMed]

Godwin DW, Vaughan JW, Sherman SM. (1996). Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. Journal of neurophysiology. 76 [PubMed]

Gropp W, Lusk E, Skjellum A. (1999). Using MPI: portable parallel programming with the message-passing interface. vol. 1. MIT press.

Guillery RW, Harting JK. (2003). Structure and connections of the thalamic reticular nucleus: Advancing views over half a century. The Journal of comparative neurology. 463 [PubMed]

HPC group. (2016). UiT The Arctic University of Norway. Stallo supercomputer, Available from: http://hpc-uit.readthedocs.io/.

HUBEL DH, WIESEL TN. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology. 160 [PubMed]

Halnes G, Augustinaite S, Heggelund P, Einevoll GT, Migliore M. (2011). A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus. PLoS computational biology. 7 [PubMed]

Halnes G, Einevoll GT. (2015). Lateral Geniculate Nucleus (LGN) Models Encyclopedia of Computational Neuroscience.

Hayot F, Tranchina D. (2001). Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Visual neuroscience. 18 [PubMed]

Heiberg T, Hagen E, Halnes G, Einevoll GT. (2016). Biophysical Network Modelling of the dLGN Circuit: Different Effects of Triadic and Axonal Inhibition on Visual Responses of Relay Cells. PLoS computational biology. 12 [PubMed]

Hill S, Tononi G. (2005). Modeling sleep and wakefulness in the thalamocortical system. Journal of neurophysiology. 93 [PubMed]

Hines ML, Carnevale NT. (2001). NEURON: a tool for neuroscientists. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 7 [PubMed]

Hines ML, Carnevale NT. (2004). Discrete event simulation in the NEURON environment. Neurocomputing. 58-60

Hirsch JA, Alonso JM, Reid RC, Martinez LM. (1998). Synaptic integration in striate cortical simple cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Hirsch JA, Martinez LM. (2006). Circuits that build visual cortical receptive fields. Trends in neurosciences. 29 [PubMed]

Jones HE et al. (2012). Differential feedback modulation of center and surround mechanisms in parvocellular cells in the visual thalamus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]

Jones HE, Andolina IM, Oakely NM, Murphy PC, Sillito AM. (2000). Spatial summation in lateral geniculate nucleus and visual cortex. Experimental brain research. 135 [PubMed]

Kielland A, Heggelund P. (2002). AMPA and NMDA currents show different short-term depression in the dorsal lateral geniculate nucleus of the rat. The Journal of physiology. 542 [PubMed]

Kirkland KL, Gerstein GL. (1998). A model of cortically induced synchronization in the lateral geniculate nucleus of the cat: a role for low-threshold calcium channels. Vision research. 38 [PubMed]

Kirkland KL, Sillito AM, Jones HE, West DC, Gerstein GL. (2000). Oscillations and long-lasting correlations in a model of the lateral geniculate nucleus and visual cortex. Journal of neurophysiology. 84 [PubMed]

Köhn J, Wörgötter F. (1996). Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli. Biological cybernetics. 75 [PubMed]

Langtangen HP. (2009). A primer on scientific programming with Python. vol. 2. Springer.

Lesica NA, Stanley GB. (2004). Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]

Lesica NA et al. (2006). Dynamic encoding of natural luminance sequences by LGN bursts. PLoS biology. 4 [PubMed]

Lindström S, Wróbel A. (1990). Frequency dependent corticofugal excitation of principal cells in the cat's dorsal lateral geniculate nucleus. Experimental brain research. 79 [PubMed]

Lindén H et al. (2013). LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Frontiers in neuroinformatics. 7 [PubMed]

Mante V, Bonin V, Carandini M. (2008). Functional mechanisms shaping lateral geniculate responses to artificial and natural stimuli. Neuron. 58 [PubMed]

Marrocco RT, McClurkin JW, Young RA. (1982). Modulation of lateral geniculate nucleus cell responsiveness by visual activation of the corticogeniculate pathway. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2 [PubMed]

Martinez LM, Alonso JM. (2003). Complex receptive fields in primary visual cortex. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. 9 [PubMed]

Martinez LM, Molano-Mazón M, Wang X, Sommer FT, Hirsch JA. (2014). Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image. Neuron. 81 [PubMed]

Martinez LM et al. (2005). Receptive field structure varies with layer in the primary visual cortex. Nature neuroscience. 8 [PubMed]

Martínez-Cañada P, Morillas C, Pino B, Ros E, Pelayo F. (2016). A Computational Framework for Realistic Retina Modeling. International journal of neural systems. 26 [PubMed]

Mastronarde DN. (1992). Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: receptive-field properties and retinal inputs. Visual neuroscience. 8 [PubMed]

McClurkin JW, Marrocco RT. (1984). Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells. The Journal of physiology. 348 [PubMed]

McCormick DA, Wang Z, Huguenard J. (1993). Neurotransmitter control of neocortical neuronal activity and excitability. Cerebral cortex (New York, N.Y. : 1991). 3 [PubMed]

McCormick DA, von Krosigk M. (1992). Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. Proceedings of the National Academy of Sciences of the United States of America. 89 [PubMed]

Montero VM. (1991). A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. Experimental brain research. 86 [PubMed]

Murphy PC, Sillito AM. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature. 329 [PubMed]

Murphy PC, Sillito AM. (1996). Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. The Journal of neuroscience : the official journal of the Society for Neuroscience. 16 [PubMed]

Norheim ES, Wyller J, Nordlie E, Einevoll GT. (2012). A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus. Cognitive neurodynamics. 6 [PubMed]

Olsen SR, Bortone DS, Adesnik H, Scanziani M. (2012). Gain control by layer six in cortical circuits of vision. Nature. 483 [PubMed]

Potjans TC, Diesmann M. (2014). The cell-type specific cortical microcircuit: relating structure and activity in a full-scale spiking network model. Cerebral cortex (New York, N.Y. : 1991). 24 [PubMed]

Przybyszewski AW, Gaska JP, Foote W, Pollen DA. (2000). Striate cortex increases contrast gain of macaque LGN neurons. Visual neuroscience. 17 [PubMed]

Reid RC, Alonso JM. (1995). Specificity of monosynaptic connections from thalamus to visual cortex. Nature. 378 [PubMed]

Rivadulla C, Martinez L, Grieve KL, Cudeiro J. (2003). Receptive field structure of burst and tonic firing in feline lateral geniculate nucleus. The Journal of physiology. 553 [PubMed]

Rogala J, Waleszczyk WJ, Lęski S, Wróbel A, Wójcik DK. (2013). Reciprocal inhibition and slow calcium decay in perigeniculate interneurons explain changes of spontaneous firing of thalamic cells caused by cortical inactivation. Journal of computational neuroscience. 34 [PubMed]

Ruksenas O, Bulatov A, Heggelund P. (2007). Dynamics of spatial resolution of single units in the lateral geniculate nucleus of cat during brief visual stimulation. Journal of neurophysiology. 97 [PubMed]

Ruksenas O, Fjeld IT, Heggelund P. (2000). Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input. Visual neuroscience. 17 [PubMed]

Sclar G, Freeman RD. (1982). Orientation selectivity in the cat's striate cortex is invariant with stimulus contrast. Experimental brain research. 46 [PubMed]

Sherman SM. (1996). Dual response modes in lateral geniculate neurons: mechanisms and functions. Visual neuroscience. 13 [PubMed]

Sherman SM, Guillery RW. (2001). Exploring the Thalamus.

Sherman SM, Guillery RW. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 357 [PubMed]

Sillito AM, Cudeiro J, Jones HE. (2006). Always returning: feedback and sensory processing in visual cortex and thalamus. Trends in neurosciences. 29 [PubMed]

Sillito AM, Cudeiro J, Murphy PC. (1993). Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Experimental brain research. 93 [PubMed]

Sillito AM, Jones HE. (2002). Corticothalamic interactions in the transfer of visual information. Philosophical transactions of the Royal Society of London. Series B, Biological sciences. 357 [PubMed]

Sillito AM, Jones HE, Gerstein GL, West DC. (1994). Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature. 369 [PubMed]

Somers DC, Nelson SB, Sur M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 15 [PubMed]

Sompolinsky H, Shapley R. (1997). New perspectives on the mechanisms for orientation selectivity. Current opinion in neurobiology. 7 [PubMed]

Stoelzel CR, Bereshpolova Y, Gusev AG, Swadlow HA. (2008). The impact of an LGNd impulse on the awake visual cortex: synaptic dynamics and the sustained/transient distinction. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]

Troyer TW, Krukowski AE, Priebe NJ, Miller KD. (1998). Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Tsumoto T, Creutzfeldt OD, Legéndy CR. (1978). Functional organization of the corticofugal system from visual cortex to lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Experimental brain research. 32 [PubMed]

Turner JP, Salt TE. (1998). Characterization of sensory and corticothalamic excitatory inputs to rat thalamocortical neurones in vitro. The Journal of physiology. 510 ( Pt 3) [PubMed]

Usrey WM, Alitto HJ. (2015). Visual Functions of the Thalamus. Annual review of vision science. 1 [PubMed]

Usrey WM, Reppas JB, Reid RC. (1999). Specificity and strength of retinogeniculate connections. Journal of neurophysiology. 82 [PubMed]

Vidyasagar TR, Urbas JV. (1982). Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Experimental brain research. 46 [PubMed]

Wang W, Andolina IM, Lu Y, Jones HE, Sillito AM. (2018). Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback. Cerebral cortex (New York, N.Y. : 1991). 28 [PubMed]

Wang W, Jones HE, Andolina IM, Salt TE, Sillito AM. (2006). Functional alignment of feedback effects from visual cortex to thalamus. Nature neuroscience. 9 [PubMed]

Wang X, Sommer FT, Hirsch JA. (2011). Inhibitory circuits for visual processing in thalamus. Current opinion in neurobiology. 21 [PubMed]

Webb BS et al. (2002). Feedback from V1 and inhibition from beyond the classical receptive field modulates the responses of neurons in the primate lateral geniculate nucleus. Visual neuroscience. 19 [PubMed]

Wohrer A, Kornprobst P. (2009). Virtual Retina: a biological retina model and simulator, with contrast gain control. Journal of computational neuroscience. 26 [PubMed]

Wörgötter F, Nelle E, Li B, Funke K. (1998). The influence of corticofugal feedback on the temporal structure of visual responses of cat thalamic relay cells. The Journal of physiology. 509 ( Pt 3) [PubMed]

Yousif N, Denham M. (2007). The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study. Biological cybernetics. 97 [PubMed]

Zhu JJ, Uhlrich DJ, Lytton WW. (1999). Burst firing in identified rat geniculate interneurons. Neuroscience. 91 [PubMed]

de Labra C et al. (2007). Changes in visual responses in the feline dLGN: selective thalamic suppression induced by transcranial magnetic stimulation of V1. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]

de Schutter E. (2009). Computational Modeling Methods for Neuroscientists.

References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.