"A major challenge in experimental data analysis is the validation of analytical methods in a fully controlled scenario where the justification of the interpretation can be made directly and not just by plausibility. ... One solution is to use simulations of realistic models to generate ground truth data. In neuroscience, creating such data requires plausible models of neural activity, access to high performance computers, expertise and time to prepare and run the simulations, and to process the output. To facilitate such validation tests of analytical methods we provide rich data sets including intracellular voltage traces, transmembrane currents, morphologies, and spike times. ... The data were generated using the largest publicly available multicompartmental model of thalamocortical network (Traub et al. 2005), with activity evoked by different thalamic stimuli."
Model Type: Realistic Network
Region(s) or Organism(s): Neocortex; Thalamus
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; Neocortex L5/6 pyramidal GLU cell; Neocortex L2/3 pyramidal GLU cell; Neocortex V1 L5B pyramidal pyramidal tract GLU cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron
Currents: I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium; I A, slow
Model Concept(s): Activity Patterns; Bursting; Temporal Pattern Generation; Oscillations; Simplified Models; Epilepsy; Sleep; Methods; Spindles
Simulation Environment: NEURON (web link to model); Python (web link to model)
Implementer(s): Glabska, Helena [glabska@gmail.com [glabska at gmail.com]; Chintaluri, Chaitanya [c.chintaluri at nencki.gov.pl]
References:
Głąbska H, Chintaluri C, Wójcik DK. (2017). Collection of Simulated Data from a Thalamocortical Network Model. Neuroinformatics. 15 [PubMed]
Traub RD et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of neurophysiology. 93 [PubMed]
Traub RD, Contreras D, Whittington MA. (2005). Combined experimental/simulation studies of cellular and network mechanisms of epileptogenesis in vitro and in vivo. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 22 [PubMed]