Brain Dynamics Toolbox (Heitmann & Breakspear 2016, 2017, 2018)


Heitmann S, Breakspear M. (2018). Handbook for the Brain Dynamics Toolbox: Version 2018a QIMR Berghofer Medical Research Institute. 2nd Edition. ISBN 978-1-9805-7250-3.

See more from authors: Heitmann S · Breakspear M

References and models cited by this paper
References and models that cite this paper

Heitmann S, Breakspear M. (2017). Chapter 1 Handbook for the Brain Dynamics Toolbox: Version 2018a.

See more from authors: Heitmann S · Breakspear M

References and models cited by this paper

Aburn MJ. (2017). Critical fluctuations and coupling of stochastic neural mass models. Ph.D. thesis, University of Queensland.

Bower JM, Beeman D. (1998). The Book Of Genesis: Exploring Realistic Neural Models With The General Neural Simulation System.

Breakspear M, Heitmann S. (2017). Putting the "dynamic" back into dynamic functional connectivity bioRxiv.

Breakspear M, Heitmann S, Aburn MJ. (2017). The Brain Dynamics Toolbox for Matlab arXiv.

Breakspear M, Heitmann S, Daffertshofer A. (2010). Generative models of cortical oscillations: neurobiological implications of the kuramoto model. Frontiers in human neuroscience. 4 [PubMed]

Breakspear M, Terry JR. (2002). Detection and description of non-linear interdependence in normal multichannel human EEG data. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 113 [PubMed]

Breakspear M, Terry JR, Friston KJ. (2003). Modulation of excitatory synaptic coupling facilitates synchronization and complex dynamics in a biophysical model of neuronal dynamics. Network (Bristol, England). 14 [PubMed]

Clewley R. (2012). Hybrid models and biological model reduction with PyDSTool. PLoS computational biology. 8 [PubMed]

Dankowicz H, Schilder F. (2013). Recipes for Continuation SIAM. ISBN 978-1- 61197-256-6.

Ermentrout B, Park Y, Heitmann S. (2017). The utility of phase models in studying neuronal synchronization Computational models of brain and behavior, 1st edn.

Ermentrout GB. (2002). Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students Society for Industrial and Applied Mathematics (SIAM).

Fitzhugh R. (1955). Mathematical models of threshold phenomena in the nerve membrane Bullmath Biophys. 17

Freyer F, Roberts JA, Ritter P, Breakspear M. (2012). A canonical model of multistability and scale-invariance in biological systems. PLoS computational biology. 8 [PubMed]

Gardiner C. (2009). Stochastic methods: a handbook for the natural and social sciences (Springer series in synergetics). 4th edn

Goodman DFM, Brette R. (2013). Brian simulator Scholarpedia. 8(1)

HODGKIN AL, HUXLEY AF. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology. 117 [PubMed]

Heitmann S, Ermentrout GB. (2015). Synchrony, waves and ripple in spatially coupled Kuramoto oscillators with Mexican hat connectivity. Biological cybernetics. 109 [PubMed]

Hindmarsh JL, Rose RM. (1984). A model of neuronal bursting using three coupled first order differential equations. Proceedings of the Royal Society of London. Series B, Biological sciences. 221 [PubMed]

Hines ML, Carnevale NT. (2006). The NEURON Book.

Hopfield JJ. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences of the United States of America. 79 [PubMed]

Jacobs K. (2010). Stochastic processes for physicists: understanding noisy systems.

Kloeden PE, Platen E. (1992). Numerical Solution Of Stochastic Differential Equations.

Kottwitz S. (2011). Latex Beginner's Guide Packt Publishing Ltd.

Kuramoto Y. (1984). Chemical oscillations, waves, and turbulence.

Kuznetsov YA, Dhooge A, Govaerts W. (2003). MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs Acm Trans Math Softw. 29

Kötter R. (2004). Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics. 2 [PubMed]

Lamport L. (1994). LaTeX: A Document Preparation System, 2nd Edition ISBN 978-0-201-52983-8.

Liley DT, Cadusch PJ, Dafilis MP, Frascoli F. (2009). Chaos and generalised multistability in a mesoscopic model of the electroencephalogram Physica D: Nonlinear Phenomena . 238(13)

Marple L. (1999). Computing the discrete-time analytic signal via FFT IEEE Transactions on Signal Processing. 47(9)

Maruyama G. (1955). Continuous Markov processes and stochastic equations Rendiconti del Circolo Matematico di Palermo. 4(1)

Moss F, Smythe J, McClintock PV, Clarkson D. (1983). Ito versus Stratonovich revisited Physics Letters A. 97(3)

Rand RH, Holmes PJ. (1980). Bifurcations of periodic motions in two weakly coupled van der Pol oscillators Int J Nonlinear Mec. 15

Roberts JA, Friston KJ, Breakspear M. (2017). Clinical Applications of Stochastic Dynamic Models of the Brain, Part I: A Primer. Biological psychiatry. Cognitive neuroscience and neuroimaging. 2 [PubMed]

Rubinov M, Sporns O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage. 52 [PubMed]

Ruemelin W. (1982). Numerical treatment of stochastic differential equations SIAM Journal on Numerical Analysis. 19(3)

Sanz Leon P et al. (2013). The Virtual Brain: a simulator of primate brain network dynamics. Frontiers in neuroinformatics. 7 [PubMed]

Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK. (2015). Mathematical framework for large-scale brain network modeling in The Virtual Brain. NeuroImage. 111 [PubMed]

The Mathworks. (2017). MATLAB & Simulink: Text with mathematical expression using LaTeX.

Thompson S, Shampine LF, Gladwell I. (2003). Solving ODEs with Matlab.

Van der Pol B. (1934). The nonlinear theory of electric oscillations Proceedings of the Institute of Radio Engineers. 22(9)

Van_kampen NG. (1992). Stochastic Processes In Physics And Chemistry.

Wang X et al. (1997). AUTO 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont) Montreal, Canada: Concordia University, (Technical Report).

Wille DR, Baker CT. (1992). DELSOL - a numerical code for the solution of systems of delay-differential equations Applied Numerical Mathematics. 9(3-5)

van_Kampen NG. (1981). Ito versus Stratonovich J Stat Phys. 24

References and models that cite this paper

Breakspear M, Heitmann S, Aburn MJ. (2017). The Brain Dynamics Toolbox for Matlab arXiv.

See more from authors: Breakspear M · Heitmann S · Aburn MJ

Heitmann S, Breakspear M. (2017). Handbook for the Brain Dynamics Toolbox: Version 2017c QIMR Berghofer Medical Research Institute. 1st Edition. ISBN 978-1-5497-2070-3.

See more from authors: Heitmann S · Breakspear M

References and models cited by this paper
References and models that cite this paper
This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.