Ventricular cell model (Guinea-pig-type) (Luo, Rudy 1991, +11 other papers!) (C++)


A mathematical model of the membrane action potential of the mammalian ventricular cell is introduced. The model is based, whenever possible, on recent single-cell and single-channel data and incorporates the possibility of changing extracellular potassium concentration [K]o. ... The results are consistent with recent experimental observations, and the model simulations relate these phenomena to the underlying ionic channel kinetics. See paper for more and details.

Model Type: Neuron or other electrically excitable cell

Cell Type(s): Heart cell; Cardiac ventricular cell

Currents: I Na,t; I L high threshold; I K; I K,leak; I_Ks

Model Concept(s): Ion Channel Kinetics; Action Potentials; Heart disease

Simulation Environment: C or C++ program (web link to model)

References:

Zeng J, Laurita KR, Rosenbaum DS, Rudy Y. (1995). Two components of the delayed rectifier K+ current in ventricular myocytes of the guinea pig type. Theoretical formulation and their role in repolarization. Circulation research. 77 [PubMed]

Zeng J, Rudy Y. (1995). Early afterdepolarizations in cardiac myocytes: mechanism and rate dependence. Biophysical journal. 68 [PubMed]

Luo CH, Rudy Y. (1994). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circulation research. 74 [PubMed]

Viswanathan PC, Shaw RM, Rudy Y. (1999). Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation. 99 [PubMed]

Luo CH, Rudy Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation research. 68 [PubMed]

Luo CH, Rudy Y. (1994). A dynamic model of the cardiac ventricular action potential. II. Afterdepolarizations, triggered activity, and potentiation. Circulation research. 74 [PubMed]

Shaw RM, Rudy Y. (1997). Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovascular research. 35 [PubMed]

Viswanathan PC, Rudy Y. (1999). Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovascular research. 42 [PubMed]

Clancy CE, Rudy Y. (1999). Linking a genetic defect to its cellular phenotype in a cardiac arrhythmia. Nature. 400 [PubMed]

Viswanathan PC, Rudy Y. (2000). Cellular arrhythmogenic effects of congenital and acquired long-QT syndrome in the heterogeneous myocardium. Circulation. 101 [PubMed]

Faber GM, Rudy Y. (2000). Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophysical journal. 78 [PubMed]

Wang YJ, Sung RJ, Lin MW, Wu SN. (2006). Contribution of BK(Ca)-channel activity in human cardiac fibroblasts to electrical coupling of cardiomyocytes-fibroblasts. The Journal of membrane biology. 213 [PubMed]


This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.