".. We considered the fast K+ currents flowing through large-conductance BK channels and through A-type channels. We developed a minimal lactotroph model to investigate the effects of these two currents. Both IBK and IA could transform the electrical pattern of activity from spiking to bursting, but through distinct mechanisms. IBK always increased the intracellular Ca2+ concentration, while IA could either increase or decrease it. Thus, the stimulatory effects of DA could be mediated by a fast K+ conductance which converts tonically spiking cells to bursters. In addition, the study illustrates that a heterogeneous distribution of fast K+ conductances could cause heterogeneous lactotroph firing patterns."
Model Type: Neuron or other electrically excitable cell
Cell Type(s): Pituitary cell
Currents: I K; I K,Ca; I Calcium
Transmitters: Dopamine
Model Concept(s): Bursting; Oscillations
Simulation Environment: XPP (web link to model)
References:
Tabak J, Toporikova N, Freeman ME, Bertram R. (2007). Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. Journal of computational neuroscience. 22 [PubMed]