Alseikhan BA, DeMaria CD, Colecraft HM, Yue DT. (2002). Engineered calmodulins reveal the unexpected eminence of Ca2+ channel inactivation in controlling heart excitation. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]
Berrou L, Bernatchez G, Parent L. (2001). Molecular determinants of inactivation within the I-II linker of alpha1E (CaV2.3) calcium channels. Biophysical journal. 80 [PubMed]
Bondarenko VE, Szigeti GP, Bett GC, Kim SJ, Rasmusson RL. (2004). Computer model of action potential of mouse ventricular myocytes. American journal of physiology. Heart and circulatory physiology. 287 [PubMed]
Branchaw JL, Banks MI, Jackson MB. (1997). Ca2+- and voltage-dependent inactivation of Ca2+ channels in nerve terminals of the neurohypophysis. The Journal of neuroscience : the official journal of the Society for Neuroscience. 17 [PubMed]
Chinushi M, Restivo M, Caref EB, El-Sherif N. (1998). Electrophysiological basis of arrhythmogenicity of QT/T alternans in the long-QT syndrome: tridimensional analysis of the kinetics of cardiac repolarization. Circulation research. 83 [PubMed]
DeMaria CD, Soong TW, Alseikhan BA, Alvania RS, Yue DT. (2001). Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature. 411 [PubMed]
Echebarria B, Karma A. (2002). Instability and spatiotemporal dynamics of alternans in paced cardiac tissue. Physical review letters. 88 [PubMed]
El Habbal MH, Mahoney CO. (2002). QT interval in children with sensory neural hearing loss. Pacing and clinical electrophysiology : PACE. 25 [PubMed]
Faber GM, Silva J, Livshitz L, Rudy Y. (2007). Kinetic properties of the cardiac L-type Ca2+ channel and its role in myocyte electrophysiology: a theoretical investigation. Biophysical journal. 92 [PubMed]
Fabritz L et al. (2003). Effect of pacing and mexiletine on dispersion of repolarisation and arrhythmias in DeltaKPQ SCN5A (long QT3) mice. Cardiovascular research. 57 [PubMed]
Findlay I. (2004). Physiological modulation of inactivation in L-type Ca2+ channels: one switch. The Journal of physiology. 554 [PubMed]
Fox JJ, McHarg JL, Gilmour RF. (2002). Ionic mechanism of electrical alternans. American journal of physiology. Heart and circulatory physiology. 282 [PubMed]
Fox JJ, Riccio ML, Hua F, Bodenschatz E, Gilmour RF. (2002). Spatiotemporal transition to conduction block in canine ventricle. Circulation research. 90 [PubMed]
Hofmann F, Lacinová L, Klugbauer N. (1999). Voltage-dependent calcium channels: from structure to function. Reviews of physiology, biochemistry and pharmacology. 139 [PubMed]
Hudmon A et al. (2005). CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. The Journal of cell biology. 171 [PubMed]
Imredy JP, Yue DT. (1994). Mechanism of Ca(2+)-sensitive inactivation of L-type Ca2+ channels. Neuron. 12 [PubMed]
Karma A. (1993). Spiral breakup in model equations of action potential propagation in cardiac tissue. Physical review letters. 71 [PubMed]
Karma A. (1994). Electrical alternans and spiral wave breakup in cardiac tissue. Chaos (Woodbury, N.Y.). 4 [PubMed]
Kim J, Ghosh S, Nunziato DA, Pitt GS. (2004). Identification of the components controlling inactivation of voltage-gated Ca2+ channels. Neuron. 41 [PubMed]
Koller ML, Riccio ML, Gilmour RF. (1998). Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation. The American journal of physiology. 275 [PubMed]
Liang H et al. (2003). Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron. 39 [PubMed]
Lo-A-Njoe SM, Wilde AA, van Erven L, Blom NA. (2005). Syndactyly and long QT syndrome (CaV1.2 missense mutation G406R) is associated with hypertrophic cardiomyopathy. Heart rhythm. 2 [PubMed]
Luo CH, Rudy Y. (1991). A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circulation research. 68 [PubMed]
Luo CH, Rudy Y. (1994). A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circulation research. 74 [PubMed]
Morad M, Soldatov N. (2005). Calcium channel inactivation: possible role in signal transduction and Ca2+ signaling. Cell calcium. 38 [PubMed]
Mori MX, Erickson MG, Yue DT. (2004). Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+ channels. Science (New York, N.Y.). 304 [PubMed]
Nemec J, Ackerman MJ, Tester DJ, Hejlik J, Shen WK. (2003). Catecholamine-provoked microvoltage T wave alternans in genotyped long QT syndrome. Pacing and clinical electrophysiology : PACE. 26 [PubMed]
Nolasco JB, Dahlen RW. (1968). A graphic method for the study of alternation in cardiac action potentials. Journal of applied physiology. 25 [PubMed]
Otani NF, Gilmour RF. (1997). Memory models for the electrical properties of local cardiac systems. Journal of theoretical biology. 187 [PubMed]
Pastore JM, Girouard SD, Laurita KR, Akar FG, Rosenbaum DS. (1999). Mechanism linking T-wave alternans to the genesis of cardiac fibrillation. Circulation. 99 [PubMed]
Pastore JM, Rosenbaum DS. (2000). Role of structural barriers in the mechanism of alternans-induced reentry. Circulation research. 87 [PubMed]
Pitt GS et al. (2001). Molecular basis of calmodulin tethering and Ca2+-dependent inactivation of L-type Ca2+ channels. The Journal of biological chemistry. 276 [PubMed]
Plonsey RC. (1988). Bioelectricity A Quantitative Approach.
Priebe L, Beuckelmann DJ. (1998). Simulation study of cellular electric properties in heart failure. Circulation research. 82 [PubMed]
Qu Z, Garfinkel A, Chen PS, Weiss JN. (2000). Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation. 102 [PubMed]
Satler CA, Vesely MR, Duggal P, Ginsburg GS, Beggs AH. (1998). Multiple different missense mutations in the pore region of HERG in patients with long QT syndrome. Human genetics. 102 [PubMed]
Sato D et al. (2006). Spatially discordant alternans in cardiac tissue: role of calcium cycling. Circulation research. 99 [PubMed]
Sato D et al. (2007). Inferring the cellular origin of voltage and calcium alternans from the spatial scales of phase reversal during discordant alternans. Biophysical journal. 92 [PubMed]
Shi C, Soldatov NM. (2002). Molecular determinants of voltage-dependent slow inactivation of the Ca2+ channel. The Journal of biological chemistry. 277 [PubMed]
Soldatov NM, Oz M, O'Brien KA, Abernethy DR, Morad M. (1998). Molecular determinants of L-type Ca2+ channel inactivation. Segment exchange analysis of the carboxyl-terminal cytoplasmic motif encoded by exons 40-42 of the human alpha1C subunit gene. The Journal of biological chemistry. 273 [PubMed]
Splawski I et al. (2005). Severe arrhythmia disorder caused by cardiac L-type calcium channel mutations. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]
Splawski I et al. (2004). Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 119 [PubMed]
Stotz SC, Zamponi GW. (2001). Identification of inactivation determinants in the domain IIS6 region of high voltage-activated calcium channels. The Journal of biological chemistry. 276 [PubMed]
Tsien RW, Zuhlke RD, Reuter H, Pitt GS. (2000). Ca2+-sensitive inactivation and facilitation of L-type Ca2+ channels both depend on specific amino acid residues in a consensus calmodulin-binding motif in the(alpha)1C subunit. J Biol Chem. 275
Watanabe MA, Fenton FH, Evans SJ, Hastings HM, Karma A. (2001). Mechanisms for discordant alternans. Journal of cardiovascular electrophysiology. 12 [PubMed]
Zühlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. (1999). Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 399 [PubMed]
ten Tusscher KH, Noble D, Noble PJ, Panfilov AV. (2004). A model for human ventricular tissue. American journal of physiology. Heart and circulatory physiology. 286 [PubMed]