Chadderdon GL et al. (2014). Motor cortex microcircuit simulation based on brain activity mapping. Neural computation. 26 [PubMed]
Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW. (2012). Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PloS one. 7 [PubMed]
Dura-Bernal S et al. (2015). Cortical Spiking Network Interfaced with Virtual Musculoskeletal Arm and Robotic Arm. Frontiers in neurorobotics. 9 [PubMed]
Kerr CC et al. (2012). Electrostimulation as a prosthesis for repair of information flow in a computer model of neocortex. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 20 [PubMed]
Kerr CC et al. (2013). Cortical information flow in Parkinson's disease: a composite network/field model. Frontiers in computational neuroscience. 7 [PubMed]
Lytton WW, Neymotin SA, Hines ML. (2008). The virtual slice setup. Journal of neuroscience methods. 171 [PubMed]
Lytton WW, Neymotin SA, Wester JC, Contreras D. (2011). Neocortical simulation for epilepsy surgery guidance: Localization and intervention Computational Surgery and Dual Training.
Lytton WW, Omurtag A. (2007). Tonic-clonic transitions in computer simulation. Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society. 24 [PubMed]
Lytton WW, Orman R, Stewart M. (2008). Broadening of activity with flow across neural structures. Perception. 37 [PubMed]
Neymotin SA, Chadderdon GL, Kerr CC, Francis JT, Lytton WW. (2013). Reinforcement learning of two-joint virtual arm reaching in a computer model of sensorimotor cortex. Neural computation. 25 [PubMed]
Neymotin SA, Lee H, Park E, Fenton AA, Lytton WW. (2011). Emergence of physiological oscillation frequencies in a computer model of neocortex. Frontiers in computational neuroscience. 5 [PubMed]
Rowan MS, Neymotin SA, Lytton WW. (2014). Electrostimulation to reduce synaptic scaling driven progression of Alzheimer's disease. Frontiers in computational neuroscience. 8 [PubMed]