Abbott LF, Nelson SB. (2000). Synaptic plasticity: taming the beast. Nature neuroscience. 3 Suppl [PubMed]
Aoki T, Aoyagi T. (2007). Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Appleby PA, Elliott T. (2005). Synaptic and temporal ensemble interpretation of spike-timing-dependent plasticity. Neural computation. 17 [PubMed]
Appleby PA, Elliott T. (2006). Stable competitive dynamics emerge from multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural computation. 18 [PubMed]
Appleby PA, Elliott T. (2007). Multispike interactions in a stochastic model of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Bohte SM, Mozer MC. (2007). Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Brader JM, Senn W, Fusi S. (2007). Learning real-world stimuli in a neural network with spike-driven synaptic dynamics. Neural computation. 19 [PubMed]
Buchs NJ, Senn W. (2002). Spike-based synaptic plasticity and the emergence of direction selective simple cells: simulation results. Journal of computational neuroscience. 13 [PubMed]
Burkitt AN, Meffin H, Grayden DB. (2004). Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural computation. 16 [PubMed]
Clopath C, Pedrosa V. (2017). The role of neuromodulators in cortical plasticity. A computational perspective. Front. Synaptic Neurosci.. 8
Franks KM, Sejnowski TJ. (2002). Complexity of calcium signaling in synaptic spines. BioEssays : news and reviews in molecular, cellular and developmental biology. 24 [PubMed]
Gansert J, Golowasch J, Nadim F. (2007). Sustained rhythmic activity in gap-junctionally coupled networks of model neurons depends on the diameter of coupled dendrites. Journal of neurophysiology. 98 [PubMed]
Gerstner W, Kistler WM. (2002). Mathematical formulations of Hebbian learning. Biological cybernetics. 87 [PubMed]
Guyonneau R, VanRullen R, Thorpe SJ. (2005). Neurons tune to the earliest spikes through STDP. Neural computation. 17 [PubMed]
Hosaka R, Araki O, Ikeguchi T. (2008). STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns. Neural computation. 20 [PubMed]
Iannella N, Tanaka S. (2006). Synaptic efficacy cluster formation across the dendrite via STDP. Neuroscience letters. 403 [PubMed]
Karmarkar UR, Buonomano DV. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of neurophysiology. 88 [PubMed]
Karmarkar UR, Najarian MT, Buonomano DV. (2002). Mechanisms and significance of spike-timing dependent plasticity. Biological cybernetics. 87 [PubMed]
Lu HC et al. (2006). Role of efficient neurotransmitter release in barrel map development. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Masuda N, Aihara K. (2004). Self-organizing dual coding based on spike-time-dependent plasticity. Neural computation. 16 [PubMed]
Masuda N, Kori H. (2007). Formation of feedforward networks and frequency synchrony by spike-timing-dependent plasticity. Journal of computational neuroscience. 22 [PubMed]
Morrison A, Aertsen A, Diesmann M. (2007). Spike-timing-dependent plasticity in balanced random networks. Neural computation. 19 [PubMed]
Roberts PD, Bell CC. (2000). Computational consequences of temporally asymmetric learning rules: II. Sensory image cancellation. Journal of computational neuroscience. 9 [PubMed]
Rowan MS, Neymotin SA. (2013). Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms. 7824
Schulz R, Reggia JA. (2004). Temporally asymmetric learning supports sequence processing in multi-winner self-organizing maps. Neural computation. 16 [PubMed]
Sejnowski TJ, Destexhe A. (2000). Why do we sleep? Brain research. 886 [PubMed]
Shen YS, Gao H, Yao H. (2005). Spike timing-dependent synaptic plasticity in visual cortex: a modeling study. Journal of computational neuroscience. 18 [PubMed]
Tiesinga PH, Toups JV. (2005). The possible role of spike patterns in cortical information processing. Journal of computational neuroscience. 18 [PubMed]
Toyoizumi T, Pfister JP, Aihara K, Gerstner W. (2007). Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution. Neural computation. 19 [PubMed]
Urakubo H, Aihara T, Kuroda S, Watanabe M, Kondo S. (2004). Spatial localization of synapses required for supralinear summation of action potentials and EPSPs. Journal of computational neuroscience. 16 [PubMed]
Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]
Yoshioka M. (2002). Spike-timing-dependent learning rule to encode spatiotemporal patterns in a network of spiking neurons. Physical review. E, Statistical, nonlinear, and soft matter physics. 65 [PubMed]
Zhou YD, Acker CD, Netoff TI, Sen K, White JA. (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]
van Pelt J, van Ooyen A, Uylings HB. (2001). The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function. Anatomy and embryology. 204 [PubMed]