Zhou YD, Acker CD, Netoff TI, Sen K, White JA. (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]

See more from authors: Zhou YD · Acker CD · Netoff TI · Sen K · White JA

References and models cited by this paper

Abarbanel HD, Huerta R, Rabinovich MI. (2002). Dynamical model of long-term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Artola A, Singer W. (1993). Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in neurosciences. 16 [PubMed]

Bi G, Poo M. (2001). Synaptic modification by correlated activity: Hebb's postulate revisited. Annual review of neuroscience. 24 [PubMed]

Bi GQ, Poo MM. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Bi GQ, Rubin J. (2005). Timing in synaptic plasticity: from detection to integration. Trends in neurosciences. 28 [PubMed]

Dan Y, Poo MM. (2004). Spike timing-dependent plasticity of neural circuits. Neuron. 44 [PubMed]

Debanne D, Gähwiler BH, Thompson SM. (1998). Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. The Journal of physiology. 507 ( Pt 1) [PubMed]

Feldman DE. (2000). Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron. 27 [PubMed]

Frick A, Magee J, Johnston D. (2004). LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nature neuroscience. 7 [PubMed]

Froemke RC, Poo MM, Dan Y. (2005). Spike-timing-dependent synaptic plasticity depends on dendritic location. Nature. 434 [PubMed]

Hille B. (2001). Classic mechanisms of block Ion Channels of Excitable Membranes (3rd edn).

Hoffman DA, Magee JC, Colbert CM, Johnston D. (1997). K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 387 [PubMed]

Karmarkar UR, Buonomano DV. (2002). A model of spike-timing dependent plasticity: one or two coincidence detectors? Journal of neurophysiology. 88 [PubMed]

Koester HJ, Sakmann B. (1998). Calcium dynamics in single spines during coincident pre- and postsynaptic activity depend on relative timing of back-propagating action potentials and subthreshold excitatory postsynaptic potentials. Proceedings of the National Academy of Sciences of the United States of America. 95 [PubMed]

Korngreen A, Kaiser KM, Zilberter Y. (2005). Subthreshold inactivation of voltage-gated K+ channels modulates action potentials in neocortical bitufted interneurones from rats. The Journal of physiology. 562 [PubMed]

Legendre P, Rosenmund C, Westbrook GL. (1993). Inactivation of NMDA channels in cultured hippocampal neurons by intracellular calcium. The Journal of neuroscience : the official journal of the Society for Neuroscience. 13 [PubMed]

Lisman J. (1989). A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proceedings of the National Academy of Sciences of the United States of America. 86 [PubMed]

Liu L et al. (2004). Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science (New York, N.Y.). 304 [PubMed]

Magee JC, Johnston D. (1997). A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science (New York, N.Y.). 275 [PubMed]

Malenka RC, Nicoll RA. (1999). Long-term potentiation--a decade of progress? Science (New York, N.Y.). 285 [PubMed]

Markram H, Lübke J, Frotscher M, Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (New York, N.Y.). 275 [PubMed]

Netoff TI et al. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of neurophysiology. 93 [PubMed]

Nishiyama M, Hong K, Mikoshiba K, Poo MM, Kato K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature. 408 [PubMed]

Rubin JE, Gerkin RC, Bi GQ, Chow CC. (2005). Calcium time course as a signal for spike-timing-dependent plasticity. Journal of neurophysiology. 93 [PubMed]

Sejnowski TJ, Destexhe A, Mainen ZF. (1998). Kinetic models of synaptic transmission Methods In Neuronal Modeling.

Shouval HZ, Bear MF, Cooper LN. (2002). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America. 99 [PubMed]

Sjöström PJ, Nelson SB. (2002). Spike timing, calcium signals and synaptic plasticity. Current opinion in neurobiology. 12 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB. (2001). Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron. 32 [PubMed]

Sjöström PJ, Turrigiano GG, Nelson SB. (2003). Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron. 39 [PubMed]

Tong G, Shepherd D, Jahr CE. (1995). Synaptic desensitization of NMDA receptors by calcineurin. Science (New York, N.Y.). 267 [PubMed]

Yun SH, Mook-Jung I, Jung MW. (2002). Variation in effective stimulus patterns for induction of long-term potentiation across different layers of rat entorhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]

Zhang LI, Tao HW, Holt CE, Harris WA, Poo M. (1998). A critical window for cooperation and competition among developing retinotectal synapses. Nature. 395 [PubMed]

Zucker RS. (1999). Calcium- and activity-dependent synaptic plasticity. Current opinion in neurobiology. 9 [PubMed]

References and models that cite this paper

D'Albis T, Kempter R. (2017). A single-cell spiking model for the origin of grid-cell patterns. PLoS computational biology. 13 [PubMed]

Evans RC et al. (2012). The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons. PLoS computational biology. 8 [PubMed]

Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of neurophysiology. 97 [PubMed]

Hardingham NR, Hardingham GE, Fox KD, Jack JJ. (2007). Presynaptic efficacy directs normalization of synaptic strength in layer 2/3 rat neocortex after paired activity. Journal of neurophysiology. 97 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.