Aoki T, Aoyagi T. (2007). Synchrony-induced switching behavior of spike pattern attractors created by spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Bohte SM, Mozer MC. (2007). Reducing the variability of neural responses: a computational theory of spike-timing-dependent plasticity. Neural computation. 19 [PubMed]
Chadderdon GL, Neymotin SA, Kerr CC, Lytton WW. (2012). Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex. PloS one. 7 [PubMed]
Clopath C, Büsing L, Vasilaki E, Gerstner W. (2010). Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nature neuroscience. 13 [PubMed]
Cruz GE, Sahley CL, Muller KJ. (2007). Neuronal competition for action potential initiation sites in a circuit controlling simple learning. Neuroscience. 148 [PubMed]
Davison AP, Frégnac Y. (2006). Learning cross-modal spatial transformations through spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Fernandez FR, Mehaffey WH, Turner RW. (2005). Dendritic Na+ current inactivation can increase cell excitability by delaying a somatic depolarizing afterpotential. Journal of neurophysiology. 94 [PubMed]
Florian RV. (2007). Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity. Neural computation. 19 [PubMed]
Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of neurophysiology. 97 [PubMed]
King PD, Zylberberg J, DeWeese MR. (2013). Inhibitory interneurons decorrelate excitatory cells to drive sparse code formation in a spiking model of V1. The Journal of neuroscience : the official journal of the Society for Neuroscience. 33 [PubMed]
Letzkus JJ, Kampa BM, Stuart GJ. (2006). Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Lu HC et al. (2006). Role of efficient neurotransmitter release in barrel map development. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Rowan MS, Neymotin SA. (2013). Synaptic Scaling Balances Learning in a Spiking Model of Neocortex Adaptive and Natural Computing Algorithms. 7824
Solinas SMG, Edelmann E, Leßmann V, Migliore M. (2019). A kinetic model for Brain-Derived Neurotrophic Factor mediated spike timing-dependent LTP. PLoS computational biology. 15 [PubMed]
Tripp B, Eliasmith C. (2007). Neural populations can induce reliable postsynaptic currents without observable spike rate changes or precise spike timing. Cerebral cortex (New York, N.Y. : 1991). 17 [PubMed]
Urakubo H, Honda M, Froemke RC, Kuroda S. (2008). Requirement of an allosteric kinetics of NMDA receptors for spike timing-dependent plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Vida I, Bartos M, Jonas P. (2006). Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 49 [PubMed]
Zhou YD, Acker CD, Netoff TI, Sen K, White JA. (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]