Abraham WC, Logan B, Wolff A, Benuskova L. (2007). "Heterosynaptic" LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity. Journal of neurophysiology. 98 [PubMed]
Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]
Bono J, Clopath C. (2019). Synaptic plasticity onto inhibitory neurons as a mechanism for ocular dominance plasticity. PLoS computational biology. 15 [PubMed]
Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]
De Schutter E. (1997). A new functional role for cerebellar long-term depression. Progress in brain research. 114 [PubMed]
De Schutter E, Smolen P. (1998). Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks.
Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]
Franks KM, Sejnowski TJ. (2002). Complexity of calcium signaling in synaptic spines. BioEssays : news and reviews in molecular, cellular and developmental biology. 24 [PubMed]
Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of neurophysiology. 97 [PubMed]
Kalitzin S, van Dijk BW, Spekreijse H. (2000). Self-organized dynamics in plastic neural networks: bistability and coherence. Biological cybernetics. 83 [PubMed]
Liu Z, Golowasch J, Marder E, Abbott LF. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]
Migliore M, Lansky P. (1999). Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophysical journal. 77 [PubMed]
Mäki-Marttunen T et al. (2019). Computational modeling of genetic contributions to excitability and neural coding in layer V pyramidal cells: applications to schizophrenia pathology Front. Comput. Neurosci.. 13
Nakano T, Yoshimoto J, Doya K. (2013). A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Frontiers in computational neuroscience. 7 [PubMed]
Stiefel KM, Gutkin BS, Sejnowski TJ. (2009). The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. Journal of computational neuroscience. 26 [PubMed]
Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]
Zhou YD, Acker CD, Netoff TI, Sen K, White JA. (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]