Artola A, Singer W. (1993). Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends in neurosciences. 16 [PubMed]

See more from authors: Artola A · Singer W

References and models cited by this paper
References and models that cite this paper

Abraham WC, Logan B, Wolff A, Benuskova L. (2007). "Heterosynaptic" LTD in the dentate gyrus of anesthetized rat requires homosynaptic activity. Journal of neurophysiology. 98 [PubMed]

Badoual M et al. (2006). Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity. International journal of neural systems. 16 [PubMed]

Bono J, Clopath C. (2019). Synaptic plasticity onto inhibitory neurons as a mechanism for ocular dominance plasticity. PLoS computational biology. 15 [PubMed]

Clopath C, Ziegler L, Vasilaki E, Büsing L, Gerstner W. (2008). Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression. PLoS computational biology. 4 [PubMed]

De Schutter E. (1997). A new functional role for cerebellar long-term depression. Progress in brain research. 114 [PubMed]

De Schutter E, Smolen P. (1998). Calcium dynamics in large neuronal models Methods In Neuronal Modeling: From Ions To Networks.

Ebner C, Clopath C, Jedlicka P, Cuntz H. (2019). Unifying Long-Term Plasticity Rules for Excitatory Synapses by Modeling Dendrites of Cortical Pyramidal Neurons. Cell reports. 29 [PubMed]

Franks KM, Sejnowski TJ. (2002). Complexity of calcium signaling in synaptic spines. BioEssays : news and reviews in molecular, cellular and developmental biology. 24 [PubMed]

Gerkin RC, Lau PM, Nauen DW, Wang YT, Bi GQ. (2007). Modular competition driven by NMDA receptor subtypes in spike-timing-dependent plasticity. Journal of neurophysiology. 97 [PubMed]

Kalitzin S, van Dijk BW, Spekreijse H. (2000). Self-organized dynamics in plastic neural networks: bistability and coherence. Biological cybernetics. 83 [PubMed]

Liu Z, Golowasch J, Marder E, Abbott LF. (1998). A model neuron with activity-dependent conductances regulated by multiple calcium sensors. The Journal of neuroscience : the official journal of the Society for Neuroscience. 18 [PubMed]

Migliore M, Lansky P. (1999). Long-term potentiation and depression induced by a stochastic conditioning of a model synapse. Biophysical journal. 77 [PubMed]

Mäki-Marttunen T et al. (2019). Computational modeling of genetic contributions to excitability and neural coding in layer V pyramidal cells: applications to schizophrenia pathology Front. Comput. Neurosci.. 13

Nakano T, Yoshimoto J, Doya K. (2013). A model-based prediction of the calcium responses in the striatal synaptic spines depending on the timing of cortical and dopaminergic inputs and post-synaptic spikes. Frontiers in computational neuroscience. 7 [PubMed]

Stiefel KM, Gutkin BS, Sejnowski TJ. (2009). The effects of cholinergic neuromodulation on neuronal phase-response curves of modeled cortical neurons. Journal of computational neuroscience. 26 [PubMed]

Wörgötter F, Porr B. (2005). Temporal sequence learning, prediction, and control: a review of different models and their relation to biological mechanisms. Neural computation. 17 [PubMed]

Zhou YD, Acker CD, Netoff TI, Sen K, White JA. (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]

This website requires cookies and limited processing of your personal data in order to function. By continuing to browse or otherwise use this site, you are agreeing to this use. See our Privacy policy and how to cite and terms of use.