Accili EA, Proenza C, Baruscotti M, DiFrancesco D. (2002). From funny current to HCN channels: 20 years of excitation. News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society. 17 [PubMed]
Alonso A, Klink R. (1993). Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II. Journal of neurophysiology. 70 [PubMed]
Alonso A, de Curtis M, Llinás R. (1990). Postsynaptic Hebbian and non-Hebbian long-term potentiation of synaptic efficacy in the entorhinal cortex in slices and in the isolated adult guinea pig brain. Proceedings of the National Academy of Sciences of the United States of America. 87 [PubMed]
Aronov D, Nevers R, Tank DW. (2017). Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit. Nature. 543 [PubMed]
Barry C, Ginzberg LL, O'Keefe J, Burgess N. (2012). Grid cell firing patterns signal environmental novelty by expansion. Proceedings of the National Academy of Sciences of the United States of America. 109 [PubMed]
Barry C, Hayman R, Burgess N, Jeffery KJ. (2007). Experience-dependent rescaling of entorhinal grids. Nature neuroscience. 10 [PubMed]
Beckmann P. (1962). Statistical distribution of the amplitude and phase of a multiply scattered field. JOURNAL OF RESEARCH of the National Bureau of Standard. 66D
Beed P et al. (2010). Analysis of excitatory microcircuitry in the medial entorhinal cortex reveals cell-type-specific differences. Neuron. 68 [PubMed]
Ben-Yishai R, Bar-Or RL, Sompolinsky H. (1995). Theory of orientation tuning in visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 92 [PubMed]
Bienenstock EL, Cooper LN, Munro PW. (1982). Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2 [PubMed]
Boccara CN et al. (2010). Grid cells in pre- and parasubiculum. Nature neuroscience. 13 [PubMed]
Bonnevie T et al. (2013). Grid cells require excitatory drive from the hippocampus. Nature neuroscience. 16 [PubMed]
Bostock E, Muller RU, Kubie JL. (1991). Experience-dependent modifications of hippocampal place cell firing. Hippocampus. 1 [PubMed]
Brandon MP et al. (2011). Reduction of theta rhythm dissociates grid cell spatial periodicity from directional tuning. Science (New York, N.Y.). 332 [PubMed]
Burak Y, Fiete IR. (2009). Accurate path integration in continuous attractor network models of grid cells. PLoS computational biology. 5 [PubMed]
Burgess N. (2008). Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus. 18 [PubMed]
Burgess N, Barry C, O'Keefe J. (2007). An oscillatory interference model of grid cell firing. Hippocampus. 17 [PubMed]
Bush D, Barry C, Manson D, Burgess N. (2015). Using Grid Cells for Navigation. Neuron. 87 [PubMed]
Bush D, Burgess N. (2014). A hybrid oscillatory interference/continuous attractor network model of grid cell firing. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]
Caballero-Bleda M, Witter MP. (1993). Regional and laminar organization of projections from the presubiculum and parasubiculum to the entorhinal cortex: an anterograde tracing study in the rat. The Journal of comparative neurology. 328 [PubMed]
Caballero-Bleda M, Witter MP. (1994). Projections from the presubiculum and the parasubiculum to morphologically characterized entorhinal-hippocampal projection neurons in the rat. Experimental brain research. 101 [PubMed]
Cacucci F, Lever C, Wills TJ, Burgess N, O'Keefe J. (2004). Theta-modulated place-by-direction cells in the hippocampal formation in the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience. 24 [PubMed]
Canto CB, Koganezawa N, Beed P, Moser EI, Witter MP. (2012). All layers of medial entorhinal cortex receive presubicular and parasubicular inputs. The Journal of neuroscience : the official journal of the Society for Neuroscience. 32 [PubMed]
Carandini M, Ringach DL. (1997). Predictions of a recurrent model of orientation selectivity. Vision research. 37 [PubMed]
Castro L, Aguiar P. (2014). A feedforward model for the formation of a grid field where spatial information is provided solely from place cells. Biological cybernetics. 108 [PubMed]
Chen G, Manson D, Cacucci F, Wills TJ. (2016). Absence of Visual Input Results in the Disruption of Grid Cell Firing in the Mouse. Current biology : CB. 26 [PubMed]
Codling EA, Plank MJ, Benhamou S. (2008). Random walk models in biology. Journal of the Royal Society, Interface. 5 [PubMed]
Constantinescu AO, O'Reilly JX, Behrens TEJ. (2016). Organizing conceptual knowledge in humans with a gridlike code. Science (New York, N.Y.). 352 [PubMed]
Couey JJ et al. (2013). Recurrent inhibitory circuitry as a mechanism for grid formation. Nature neuroscience. 16 [PubMed]
D'Albis T, Jaramillo J, Sprekeler H, Kempter R. (2015). Inheritance of Hippocampal Place Fields Through Hebbian Learning: Effects of Theta Modulation and Phase Precession on Structure Formation. Neural computation. 27 [PubMed]
Davis GW, Goodman CS. (1998). Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature. 392 [PubMed]
Deng PY, Lei S. (2007). Long-term depression in identified stellate neurons of juvenile rat entorhinal cortex. Journal of neurophysiology. 97 [PubMed]
Dhillon A, Jones RS. (2000). Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro. Neuroscience. 99 [PubMed]
Dickson CT et al. (2000). Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. Journal of neurophysiology. 83 [PubMed]
Diehl GW, Hon OJ, Leutgeb S, Leutgeb JK. (2017). Grid and Nongrid Cells in Medial Entorhinal Cortex Represent Spatial Location and Environmental Features with Complementary Coding Schemes. Neuron. 94 [PubMed]
Domnisoru C, Kinkhabwala AA, Tank DW. (2013). Membrane potential dynamics of grid cells. Nature. 495 [PubMed]
Donato F, Jacobsen RI, Moser MB, Moser EI. (2017). Stellate cells drive maturation of the entorhinal-hippocampal circuit. Science (New York, N.Y.). 355 [PubMed]
Dordek Y, Soudry D, Meir R, Derdikman D. (2016). Extracting grid cell characteristics from place cell inputs using non-negative principal component analysis. eLife. 5 [PubMed]
Dunn B, Mørreaunet M, Roudi Y. (2015). Correlations and functional connections in a population of grid cells. PLoS computational biology. 11 [PubMed]
Ermentrout GB, Cowan JD. (1979). A mathematical theory of visual hallucination patterns. Biological cybernetics. 34 [PubMed]
Etienne AS, Jeffery KJ. (2004). Path integration in mammals. Hippocampus. 14 [PubMed]
Fiete IR, Burak Y, Brookings T. (2008). What grid cells convey about rat location. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Fuchs EC et al. (2016). Local and Distant Input Controlling Excitation in Layer II of the Medial Entorhinal Cortex. Neuron. 89 [PubMed]
Fuhs MC, Touretzky DS. (2006). A spin glass model of path integration in rat medial entorhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 26 [PubMed]
Fyhn M, Hafting T, Treves A, Moser MB, Moser EI. (2007). Hippocampal remapping and grid realignment in entorhinal cortex. Nature. 446 [PubMed]
Fyhn M, Molden S, Witter MP, Moser EI, Moser MB. (2004). Spatial representation in the entorhinal cortex. Science (New York, N.Y.). 305 [PubMed]
Garden DL, Dodson PD, O'Donnell C, White MD, Nolan MF. (2008). Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron. 60 [PubMed]
Gerstner W, Kempter R, van Hemmen JL, Wagner H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature. 383 [PubMed]
Giocomo LM, Hasselmo ME. (2008). Time constants of h current in layer ii stellate cells differ along the dorsal to ventral axis of medial entorhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 28 [PubMed]
Giocomo LM, Moser MB, Moser EI. (2011). Computational models of grid cells. Neuron. 71 [PubMed]
Giocomo LM, Zilli EA, Fransén E, Hasselmo ME. (2007). Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science (New York, N.Y.). 315 [PubMed]
Guanella A, Kiper D, Verschure P. (2007). A model of grid cells based on a twisted torus topology. International journal of neural systems. 17 [PubMed]
Hafting T, Fyhn M, Bonnevie T, Moser MB, Moser EI. (2008). Hippocampus-independent phase precession in entorhinal grid cells. Nature. 453 [PubMed]
Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature. 436 [PubMed]
Hargreaves EL, Rao G, Lee I, Knierim JJ. (2005). Major dissociation between medial and lateral entorhinal input to dorsal hippocampus. Science (New York, N.Y.). 308 [PubMed]
Hargreaves EL, Yoganarasimha D, Knierim JJ. (2007). Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus. Hippocampus. 17 [PubMed]
Hasselmo ME, Giocomo LM, Zilli EA. (2007). Grid cell firing may arise from interference of theta frequency membrane potential oscillations in single neurons. Hippocampus. 17 [PubMed]
Heys JG, Rangarajan KV, Dombeck DA. (2014). The functional micro-organization of grid cells revealed by cellular-resolution imaging. Neuron. 84 [PubMed]
Horner AJ, Bisby JA, Zotow E, Bush D, Burgess N. (2016). Grid-like Processing of Imagined Navigation. Current biology : CB. 26 [PubMed]
I. U. Kruge, T. Waaga, T. Wernle, M.-B. Moser, E. I. Moser. (2016). r. Development of grid cells requires only minimal experience with geometric boundaries SFN Abstracts.
Iijima T et al. (1996). Entorhinal-hippocampal interactions revealed by real-time imaging. Science (New York, N.Y.). 272 [PubMed]
Jung MW, Wiener SI, McNaughton BL. (1994). Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. The Journal of neuroscience : the official journal of the Society for Neuroscience. 14 [PubMed]
Kitamura T et al. (2014). Island cells control temporal association memory. Science (New York, N.Y.). 343 [PubMed]
Kjelstrup KB et al. (2008). Finite scale of spatial representation in the hippocampus. Science (New York, N.Y.). 321 [PubMed]
Kloosterman F, Van Haeften T, Witter MP, Lopes Da Silva FH. (2003). Electrophysiological characterization of interlaminar entorhinal connections: an essential link for re-entrance in the hippocampal-entorhinal system. The European journal of neuroscience. 18 [PubMed]
Koenig J, Linder AN, Leutgeb JK, Leutgeb S. (2011). The spatial periodicity of grid cells is not sustained during reduced theta oscillations. Science (New York, N.Y.). 332 [PubMed]
Kropff E, Carmichael JE, Moser MB, Moser EI. (2015). Speed cells in the medial entorhinal cortex. Nature. 523 [PubMed]
Kropff E, Treves A. (2008). The emergence of grid cells: Intelligent design or just adaptation? Hippocampus. 18 [PubMed]
Krupic J, Bauza M, Burton S, Barry C, O'Keefe J. (2015). Grid cell symmetry is shaped by environmental geometry. Nature. 518 [PubMed]
Krupic J, Bauza M, Burton S, O'Keefe J. (2016). Framing the grid: effect of boundaries on grid cells and navigation. The Journal of physiology. 594 [PubMed]
La Camera G et al. (2006). Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons. Journal of neurophysiology. 96 [PubMed]
Langston RF et al. (2010). Development of the spatial representation system in the rat. Science (New York, N.Y.). 328 [PubMed]
Lever C, Burton S, Jeewajee A, O'Keefe J, Burgess N. (2009). Boundary vector cells in the subiculum of the hippocampal formation. The Journal of neuroscience : the official journal of the Society for Neuroscience. 29 [PubMed]
Maaswinkel H, Whishaw IQ. (1999). Homing with locale, taxon, and dead reckoning strategies by foraging rats: sensory hierarchy in spatial navigation. Behavioural brain research. 99 [PubMed]
Markram H, Lübke J, Frotscher M, Sakmann B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science (New York, N.Y.). 275 [PubMed]
Mathis A, Herz AV, Stemmler M. (2012). Optimal population codes for space: grid cells outperform place cells. Neural computation. 24 [PubMed]
McFarland WL, Teitelbaum H, Hedges EK. (1975). Relationship between hippocampal theta activity and running speed in the rat. Journal of comparative and physiological psychology. 88 [PubMed]
McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. (2006). Path integration and the neural basis of the 'cognitive map'. Nature reviews. Neuroscience. 7 [PubMed]
Mishra RK, Kim S, Guzman SJ, Jonas P. (2016). Symmetric spike timing-dependent plasticity at CA3-CA3 synapses optimizes storage and recall in autoassociative networks. Nature communications. 7 [PubMed]
Mizuseki K, Royer S, Diba K, Buzsáki G. (2012). Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons. Hippocampus. 22 [PubMed]
Monsalve-Mercado MM, Leibold C. (2017). Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields. Physical review letters. 119 [PubMed]
Moser EI, Kropff E, Moser MB. (2008). Place cells, grid cells, and the brain's spatial representation system. Annual review of neuroscience. 31 [PubMed]
Muller RU, Kubie JL. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. The Journal of neuroscience : the official journal of the Society for Neuroscience. 7 [PubMed]
Murray J. (2002). Mathematical biology I: An introduction (3rd Ed).
N. Dagslott, F. Donato, Ø. A. Høydal, T. Waaga, M.-B. Moser, E. I. Moser.. (2016). Disrupted spatial representation following knock-out of NMDA receptors in the medial entorhinal cortex. SFN Abstracts .
Navratilova Z, Giocomo LM, Fellous JM, Hasselmo ME, McNaughton BL. (2012). Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus. 22 [PubMed]
Nicoll RA, Alger BE. (1981). Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. Science (New York, N.Y.). 212 [PubMed]
Nolan MF, Dudman JT, Dodson PD, Santoro B. (2007). HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 27 [PubMed]
O'Brien RJ et al. (1998). Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron. 21 [PubMed]
O'Keefe J. (1976). Place units in the hippocampus of the freely moving rat. Experimental neurology. 51 [PubMed]
O'Keefe J, Burgess N. (1996). Geometric determinants of the place fields of hippocampal neurons. Nature. 381 [PubMed]
O'Keefe J, Burgess N. (2005). Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 15 [PubMed]
O'Neill J, Boccara CN, Stella F, Schoenenberger P, Csicsvari J. (2017). Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science (New York, N.Y.). 355 [PubMed]
Pastoll H, Ramsden HL, Nolan MF. (2012). Intrinsic electrophysiological properties of entorhinal cortex stellate cells and their contribution to grid cell firing fields. Frontiers in neural circuits. 6 [PubMed]
Pastoll H, Solanka L, van Rossum MC, Nolan MF. (2013). Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron. 77 [PubMed]
Pérez-Escobar JA, Kornienko O, Latuske P, Kohler L, Allen K. (2016). Visual landmarks sharpen grid cell metric and confer context specificity to neurons of the medial entorhinal cortex. eLife. 5 [PubMed]
Ray S et al. (2014). Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex. Science (New York, N.Y.). 343 [PubMed]
Reifenstein E, Stemmler M, Herz AV, Kempter R, Schreiber S. (2014). Movement dependence and layer specificity of entorhinal phase precession in two-dimensional environments. PloS one. 9 [PubMed]
Richter H, Heinemann U, Eder C. (2000). Hyperpolarization-activated cation currents in stellate and pyramidal neurons of rat entorhinal cortex. Neuroscience letters. 281 [PubMed]
Robinson RB, Siegelbaum SA. (2003). Hyperpolarization-activated cation currents: from molecules to physiological function. Annual review of physiology. 65 [PubMed]
Rowland DC, Roudi Y, Moser MB, Moser EI. (2016). Ten Years of Grid Cells. Annual review of neuroscience. 39 [PubMed]
Sargolini F et al. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science (New York, N.Y.). 312 [PubMed]
Savelli F, Yoganarasimha D, Knierim JJ. (2008). Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus. 18 [PubMed]
Schmidt-Hieber C, Häusser M. (2013). Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nature neuroscience. 16 [PubMed]
Si B, Kropff E, Treves A. (2012). Grid alignment in entorhinal cortex. Biological cybernetics. 106 [PubMed]
Si B, Treves A. (2013). A model for the differentiation between grid and conjunctive units in medial entorhinal cortex. Hippocampus. 23 [PubMed]
Solger J, Wozny C, Manahan-Vaughan D, Behr J. (2004). Distinct mechanisms of bidirectional activity-dependent synaptic plasticity in superficial and deep layers of rat entorhinal cortex. The European journal of neuroscience. 19 [PubMed]
Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI. (2008). Representation of geometric borders in the entorhinal cortex. Science (New York, N.Y.). 322 [PubMed]
Song S, Miller KD, Abbott LF. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature neuroscience. 3 [PubMed]
Stella F, Treves A. (2015). The self-organization of grid cells in 3D. eLife. 4 [PubMed]
Stemmler M, Mathis A, Herz AV. (2015). Connecting multiple spatial scales to decode the population activity of grid cells. Science advances. 1 [PubMed]
Stensola H et al. (2012). The entorhinal grid map is discretized. Nature. 492 [PubMed]
Stensola T, Stensola H, Moser MB, Moser EI. (2015). Shearing-induced asymmetry in entorhinal grid cells. Nature. 518 [PubMed]
Stepanyuk A. (2015). Self-organization of grid fields under supervision of place cells in a neuron model with associative plasticity. Biol. Insp. Cogn. Archit. 13
Stimberg M, Goodman DF, Benichoux V, Brette R. (2014). Equation-oriented specification of neural models for simulations. Frontiers in neuroinformatics. 8 [PubMed]
Sun C et al. (2015). Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells. Proceedings of the National Academy of Sciences of the United States of America. 112 [PubMed]
Sürmeli G et al. (2015). Molecularly Defined Circuitry Reveals Input-Output Segregation in Deep Layers of the Medial Entorhinal Cortex. Neuron. 88 [PubMed]
Sławińska U, Kasicki S. (1998). The frequency of rat's hippocampal theta rhythm is related to the speed of locomotion. Brain research. 796 [PubMed]
Tamamaki N, Nojyo Y. (1995). Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats. The Journal of comparative neurology. 353 [PubMed]
Tang Q et al. (2014). Pyramidal and stellate cell specificity of grid and border representations in layer 2 of medial entorhinal cortex. Neuron. 84 [PubMed]
Tang Q et al. (2016). Functional Architecture of the Rat Parasubiculum. The Journal of neuroscience : the official journal of the Society for Neuroscience. 36 [PubMed]
Tocker G, Barak O, Derdikman D. (2015). Grid cells correlation structure suggests organized feedforward projections into superficial layers of the medial entorhinal cortex. Hippocampus. 25 [PubMed]
Treves A, Kropff E, Stella F, Si B. (2013). Grid cells on the ball J. Stat. Mech.
Turing AM. (1952). The chemical basis of morphogenesis Phil. Trans. R. Soc. Lond. B. 237
Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. (1998). Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature. 391 [PubMed]
Turrigiano GG, Nelson SB. (2004). Homeostatic plasticity in the developing nervous system. Nature reviews. Neuroscience. 5 [PubMed]
Urdapilleta E, Si B, Treves A. (2017). Selforganization of modular activity of grid cells. Hippocampus. 27 [PubMed]
Vanderwolf CH. (1969). Hippocampal electrical activity and voluntary movement in the rat. Electroencephalography and clinical neurophysiology. 26 [PubMed]
Varga C, Lee SY, Soltesz I. (2010). Target-selective GABAergic control of entorhinal cortex output. Nature neuroscience. 13 [PubMed]
Weber SN, Sprekeler H. (2018). Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity. eLife. 7 [PubMed]
Widloski J, Fiete IR. (2014). A model of grid cell development through spatial exploration and spike time-dependent plasticity. Neuron. 83 [PubMed]
Wills TJ, Barry C, Cacucci F. (2012). The abrupt development of adult-like grid cell firing in the medial entorhinal cortex. Frontiers in neural circuits. 6 [PubMed]
Wills TJ, Cacucci F, Burgess N, O'Keefe J. (2010). Development of the hippocampal cognitive map in preweanling rats. Science (New York, N.Y.). 328 [PubMed]
Winson J. (1974). Patterns of hippocampal theta rhythm in the freely moving rat. Electroencephalography and clinical neurophysiology. 36 [PubMed]
Winterer J et al. (2017). Excitatory Microcircuits within Superficial Layers of the Medial Entorhinal Cortex. Cell reports. 19 [PubMed]
Yang S et al. (2004). Long-term synaptic plasticity in deep layer-originated associational projections to superficial layers of rat entorhinal cortex. Neuroscience. 127 [PubMed]
Yartsev MM, Witter MP, Ulanovsky N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature. 479 [PubMed]
Yoon K et al. (2013). Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nature neuroscience. 16 [PubMed]
Yoshida M, Jochems A, Hasselmo ME. (2013). Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation. PloS one. 8 [PubMed]
Yun SH, Mook-Jung I, Jung MW. (2002). Variation in effective stimulus patterns for induction of long-term potentiation across different layers of rat entorhinal cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience. 22 [PubMed]
Zhou YD, Acker CD, Netoff TI, Sen K, White JA. (2005). Increasing Ca2+ transients by broadening postsynaptic action potentials enhances timing-dependent synaptic depression. Proceedings of the National Academy of Sciences of the United States of America. 102 [PubMed]
Zilli EA. (2012). Models of grid cell spatial firing published 2005-2011. Frontiers in neural circuits. 6 [PubMed]
Zilli EA, Hasselmo ME. (2010). Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing. The Journal of neuroscience : the official journal of the Society for Neuroscience. 30 [PubMed]
de Curtis M, Llinas RR. (1993). Entorhinal cortex long-term potentiation evoked by theta-patterned stimulation of associative fibers in the isolated in vitro guinea pig brain. Brain research. 600 [PubMed]
van Groen T, Wyss JM. (1990). The connections of presubiculum and parasubiculum in the rat. Brain research. 518 [PubMed]
van Haeften T, Baks-te-Bulte L, Goede PH, Wouterlood FG, Witter MP. (2003). Morphological and numerical analysis of synaptic interactions between neurons in deep and superficial layers of the entorhinal cortex of the rat. Hippocampus. 13 [PubMed]
van Hemmen JL, Gerstner W, Kempter R. (1999). Hebbian learning and spiking neurons Physical Review E. 59
van der Linden S, Lopes da Silva FH. (1998). Comparison of the electrophysiology and morphology of layers III and II neurons of the rat medial entorhinal cortex in vitro. The European journal of neuroscience. 10 [PubMed]
Ólafsdóttir HF, Carpenter F, Barry C. (2016). Coordinated grid and place cell replay during rest. Nature neuroscience. 19 [PubMed]