Bush D, Barry C, Manson D, Burgess N. (2015). Using Grid Cells for Navigation. Neuron. 87 [PubMed]
Bush D, Burgess N. (2014). A hybrid oscillatory interference/continuous attractor network model of grid cell firing. The Journal of neuroscience : the official journal of the Society for Neuroscience. 34 [PubMed]
Bush D, Burgess N. (2020). Advantages and detection of phase coding in the absence of rhythmicity. Hippocampus. 30 [PubMed]
Castro L, Aguiar P. (2014). A feedforward model for the formation of a grid field where spatial information is provided solely from place cells. Biological cybernetics. 108 [PubMed]
D'Albis T, Kempter R. (2017). A single-cell spiking model for the origin of grid-cell patterns. PLoS computational biology. 13 [PubMed]
Kulvicius T, Tamosiunaite M, Ainge J, Dudchenko P, Wörgötter F. (2008). Odor supported place cell model and goal navigation in rodents. Journal of computational neuroscience. 25 [PubMed]
Monaco JD, Abbott LF. (2011). Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping. The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 [PubMed]
Pilly PK, Grossberg S. (2013). Spiking neurons in a hierarchical self-organizing map model can learn to develop spatial and temporal properties of entorhinal grid cells and hippocampal place cells PloS one. 8 [PubMed]
Raudies F, Hasselmo ME. (2015). Differences in Visual-Spatial Input May Underlie Different Compression Properties of Firing Fields for Grid Cell Modules in Medial Entorhinal Cortex. PLoS computational biology. 11 [PubMed]
Soman K, Chakravarthy S, Yartsev MM. (2018). A hierarchical anti-Hebbian network model for the formation of spatial cells in three-dimensional space. Nature communications. 9 [PubMed]
Wernle T et al. (2018). Integration of grid maps in merged environments. Nature neuroscience. 21 [PubMed]
Zilli EA. (2010). Coupled Noisy Spiking Neurons as Velocity-Controlled Oscillators in a Model of Grid Cell Spatial Firing J. Neurosci.. 30(41)